-
1 technology
1. n техника; технические и прикладные науки2. n научная аппаратураaerial and satellite technologies — научная аппаратура, устанавливаемая на самолётах и спутниках
3. n техника, специальные приёмыthe technology of repression has become more refined — техника подавления оппозиционных настроений стала более тонкой
4. n технология5. n специальная терминологияСинонимический ряд:body of knowledge (noun) area of study; body of knowledge; body of laws or principles; branch of knowledge; chemistry; discipline; physics; science; system of knowledge -
2 noise-free technology
бесшумная технология
—
[ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]EN
noise-free technology
Sound is radiated both as air-borne and as structure-borne; most sources produce both, thus various noise attenuation principles must be employed. Measures include: the replacement of components with quieter parts and material; the enclosure of particularly noisy components; the selection of quieter types of fan; the replacement of noisy compressed-air nozzles with quieter types; the choice of quieter transmission and cooling systems. (Source: GILP96a)
[http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]Тематики
EN
DE
FR
Англо-русский словарь нормативно-технической терминологии > noise-free technology
-
3 POT
1) Общая лексика: Palestinian Occupied Territories2) Компьютерная техника: Portable Object Template, point of termination3) Спорт: Player Operated Turret4) Военный термин: Power Of Terror, performance-oriented training, portable outside toilet5) Шутливое выражение: Puff On This6) Химия: Potion Of Thought7) Грубое выражение: Pissed Off Torrell8) Телекоммуникации: Plain Old Telephony9) Сокращение: Prevention of Terrorism10) Физика: Protons On Target11) Электроника: Peaks Over Threshold12) Транспорт: Point Of Transportation13) Воздухоплавание: Propeller Order Transmitter14) Фирменный знак: Patterson Office Tower15) Деловая лексика: Point Of Transaction, Profit On Turnover16) Образование: Principles of Technology17) Сетевые технологии: переносной терминал для обмена данными18) Океанография: Program for Operational Trajectories19) Расширение файла: Continuous potential image (Fractint), Template (MS PowerPoint)20) Должность: Post Ordination Training21) Аэропорты: Port Antonio, Jamaica -
4 pot
1) Общая лексика: Palestinian Occupied Territories2) Компьютерная техника: Portable Object Template, point of termination3) Спорт: Player Operated Turret4) Военный термин: Power Of Terror, performance-oriented training, portable outside toilet5) Шутливое выражение: Puff On This6) Химия: Potion Of Thought7) Грубое выражение: Pissed Off Torrell8) Телекоммуникации: Plain Old Telephony9) Сокращение: Prevention of Terrorism10) Физика: Protons On Target11) Электроника: Peaks Over Threshold12) Транспорт: Point Of Transportation13) Воздухоплавание: Propeller Order Transmitter14) Фирменный знак: Patterson Office Tower15) Деловая лексика: Point Of Transaction, Profit On Turnover16) Образование: Principles of Technology17) Сетевые технологии: переносной терминал для обмена данными18) Океанография: Program for Operational Trajectories19) Расширение файла: Continuous potential image (Fractint), Template (MS PowerPoint)20) Должность: Post Ordination Training21) Аэропорты: Port Antonio, Jamaica -
5 Bibliography
■ Aitchison, J. (1987). Noam Chomsky: Consensus and controversy. New York: Falmer Press.■ Anderson, J. R. (1980). Cognitive psychology and its implications. San Francisco: W. H. Freeman.■ Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.■ Anderson, J. R. (1995). Cognitive psychology and its implications (4th ed.). New York: W. H. Freeman.■ Archilochus (1971). In M. L. West (Ed.), Iambi et elegi graeci (Vol. 1). Oxford: Oxford University Press.■ Armstrong, D. M. (1990). The causal theory of the mind. In W. G. Lycan (Ed.), Mind and cognition: A reader (pp. 37-47). Cambridge, MA: Basil Blackwell. (Originally published in 1981 in The nature of mind and other essays, Ithaca, NY: University Press).■ Atkins, P. W. (1992). Creation revisited. Oxford: W. H. Freeman & Company.■ Austin, J. L. (1962). How to do things with words. Cambridge, MA: Harvard University Press.■ Bacon, F. (1878). Of the proficience and advancement of learning divine and human. In The works of Francis Bacon (Vol. 1). Cambridge, MA: Hurd & Houghton.■ Bacon, R. (1928). Opus majus (Vol. 2). R. B. Burke (Trans.). Philadelphia, PA: University of Pennsylvania Press.■ Bar-Hillel, Y. (1960). The present status of automatic translation of languages. In F. L. Alt (Ed.), Advances in computers (Vol. 1). New York: Academic Press.■ Barr, A., & E. A. Feigenbaum (Eds.) (1981). The handbook of artificial intelligence (Vol. 1). Reading, MA: Addison-Wesley.■ Barr, A., & E. A. Feigenbaum (Eds.) (1982). The handbook of artificial intelligence (Vol. 2). Los Altos, CA: William Kaufman.■ Barron, F. X. (1963). The needs for order and for disorder as motives in creative activity. In C. W. Taylor & F. X. Barron (Eds.), Scientific creativity: Its rec ognition and development (pp. 153-160). New York: Wiley.■ Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge: Cambridge University Press.■ Bartley, S. H. (1969). Principles of perception. London: Harper & Row.■ Barzun, J. (1959). The house of intellect. New York: Harper & Row.■ Beach, F. A., D. O. Hebb, C. T. Morgan & H. W. Nissen (Eds.) (1960). The neu ropsychology of Lashley. New York: McGraw-Hill.■ Berkeley, G. (1996). Principles of human knowledge: Three Dialogues. Oxford: Oxford University Press. (Originally published in 1710.)■ Berlin, I. (1953). The hedgehog and the fox: An essay on Tolstoy's view of history. NY: Simon & Schuster.■ Bierwisch, J. (1970). Semantics. In J. Lyons (Ed.), New horizons in linguistics. Baltimore: Penguin Books.■ Black, H. C. (1951). Black's law dictionary. St. Paul, MN: West Publishing.■ Bloom, A. (1981). The linguistic shaping of thought: A study in the impact of language on thinking in China and the West. Hillsdale, NJ: Erlbaum.■ Bobrow, D. G., & D. A. Norman (1975). Some principles of memory schemata. In D. G. Bobrow & A. Collins (Eds.), Representation and understanding: Stud ies in Cognitive Science (pp. 131-149). New York: Academic Press.■ Boden, M. A. (1977). Artificial intelligence and natural man. New York: Basic Books.■ Boden, M. A. (1981). Minds and mechanisms. Ithaca, NY: Cornell University Press.■ Boden, M. A. (1990a). The creative mind: Myths and mechanisms. London: Cardinal.■ Boden, M. A. (1990b). The philosophy of artificial intelligence. Oxford: Oxford University Press.■ Boden, M. A. (1994). Precis of The creative mind: Myths and mechanisms. Behavioral and brain sciences 17, 519-570.■ Boden, M. (1996). Creativity. In M. Boden (Ed.), Artificial Intelligence (2nd ed.). San Diego: Academic Press.■ Bolter, J. D. (1984). Turing's man: Western culture in the computer age. Chapel Hill, NC: University of North Carolina Press.■ Bolton, N. (1972). The psychology of thinking. London: Methuen.■ Bourne, L. E. (1973). Some forms of cognition: A critical analysis of several papers. In R. Solso (Ed.), Contemporary issues in cognitive psychology (pp. 313324). Loyola Symposium on Cognitive Psychology (Chicago 1972). Washington, DC: Winston.■ Bransford, J. D., N. S. McCarrell, J. J. Franks & K. E. Nitsch (1977). Toward unexplaining memory. In R. Shaw & J. D. Bransford (Eds.), Perceiving, acting, and knowing (pp. 431-466). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Breger, L. (1981). Freud's unfinished journey. London: Routledge & Kegan Paul.■ Brehmer, B. (1986). In one word: Not from experience. In H. R. Arkes & K. Hammond (Eds.), Judgment and decision making: An interdisciplinary reader (pp. 705-719). Cambridge: Cambridge University Press.■ Bresnan, J. (1978). A realistic transformational grammar. In M. Halle, J. Bresnan & G. A. Miller (Eds.), Linguistic theory and psychological reality (pp. 1-59). Cambridge, MA: MIT Press.■ Brislin, R. W., W. J. Lonner & R. M. Thorndike (Eds.) (1973). Cross- cultural research methods. New York: Wiley.■ Bronowski, J. (1977). A sense of the future: Essays in natural philosophy. P. E. Ariotti with R. Bronowski (Eds.). Cambridge, MA: MIT Press.■ Bronowski, J. (1978). The origins of knowledge and imagination. New Haven, CT: Yale University Press.■ Brown, R. O. (1973). A first language: The early stages. Cambridge, MA: Harvard University Press.■ Brown, T. (1970). Lectures on the philosophy of the human mind. In R. Brown (Ed.), Between Hume and Mill: An anthology of British philosophy- 1749- 1843 (pp. 330-387). New York: Random House/Modern Library.■ Bruner, J. S., J. Goodnow & G. Austin (1956). A study of thinking. New York: Wiley.■ Calvin, W. H. (1990). The cerebral symphony: Seashore reflections on the structure of consciousness. New York: Bantam.■ Campbell, J. (1982). Grammatical man: Information, entropy, language, and life. New York: Simon & Schuster.■ Campbell, J. (1989). The improbable machine. New York: Simon & Schuster.■ Carlyle, T. (1966). On heroes, hero- worship and the heroic in history. Lincoln: University of Nebraska Press. (Originally published in 1841.)■ Carnap, R. (1959). The elimination of metaphysics through logical analysis of language [Ueberwindung der Metaphysik durch logische Analyse der Sprache]. In A. J. Ayer (Ed.), Logical positivism (pp. 60-81) A. Pap (Trans). New York: Free Press. (Originally published in 1932.)■ Cassirer, E. (1946). Language and myth. New York: Harper and Brothers. Reprinted. New York: Dover Publications, 1953.■ Cattell, R. B., & H. J. Butcher (1970). Creativity and personality. In P. E. Vernon (Ed.), Creativity. Harmondsworth, England: Penguin Books.■ Caudill, M., & C. Butler (1990). Naturally intelligent systems. Cambridge, MA: MIT Press/Bradford Books.■ Chandrasekaran, B. (1990). What kind of information processing is intelligence? A perspective on AI paradigms and a proposal. In D. Partridge & R. Wilks (Eds.), The foundations of artificial intelligence: A sourcebook (pp. 14-46). Cambridge: Cambridge University Press.■ Charniak, E., & McDermott, D. (1985). Introduction to artificial intelligence. Reading, MA: Addison-Wesley.■ Chase, W. G., & H. A. Simon (1988). The mind's eye in chess. In A. Collins & E. E. Smith (Eds.), Readings in cognitive science: A perspective from psychology and artificial intelligence (pp. 461-493). San Mateo, CA: Kaufmann.■ Cheney, D. L., & R. M. Seyfarth (1990). How monkeys see the world: Inside the mind of another species. Chicago: University of Chicago Press.■ Chi, M.T.H., R. Glaser & E. Rees (1982). Expertise in problem solving. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 7-73). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Chomsky, N. (1957). Syntactic structures. The Hague: Mouton. Janua Linguarum.■ Chomsky, N. (1964). A transformational approach to syntax. In J. A. Fodor & J. J. Katz (Eds.), The structure of language: Readings in the philosophy of lan guage (pp. 211-245). Englewood Cliffs, NJ: Prentice-Hall.■ Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.■ Chomsky, N. (1972). Language and mind (enlarged ed.). New York: Harcourt Brace Jovanovich.■ Chomsky, N. (1979). Language and responsibility. New York: Pantheon.■ Chomsky, N. (1986). Knowledge of language: Its nature, origin and use. New York: Praeger Special Studies.■ Churchland, P. (1979). Scientific realism and the plasticity of mind. New York: Cambridge University Press.■ Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA: MIT Press.■ Churchland, P. S. (1986). Neurophilosophy. Cambridge, MA: MIT Press/Bradford Books.■ Clark, A. (1996). Philosophical Foundations. In M. A. Boden (Ed.), Artificial in telligence (2nd ed.). San Diego: Academic Press.■ Clark, H. H., & T. B. Carlson (1981). Context for comprehension. In J. Long & A. Baddeley (Eds.), Attention and performance (Vol. 9, pp. 313-330). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Clarke, A. C. (1984). Profiles of the future: An inquiry into the limits of the possible. New York: Holt, Rinehart & Winston.■ Claxton, G. (1980). Cognitive psychology: A suitable case for what sort of treatment? In G. Claxton (Ed.), Cognitive psychology: New directions (pp. 1-25). London: Routledge & Kegan Paul.■ Code, M. (1985). Order and organism. Albany, NY: State University of New York Press.■ Collingwood, R. G. (1972). The idea of history. New York: Oxford University Press.■ Coopersmith, S. (1967). The antecedents of self- esteem. San Francisco: W. H. Freeman.■ Copland, A. (1952). Music and imagination. London: Oxford University Press.■ Coren, S. (1994). The intelligence of dogs. New York: Bantam Books.■ Cottingham, J. (Ed.) (1996). Western philosophy: An anthology. Oxford: Blackwell Publishers.■ Cox, C. (1926). The early mental traits of three hundred geniuses. Stanford, CA: Stanford University Press.■ Craik, K.J.W. (1943). The nature of explanation. Cambridge: Cambridge University Press.■ Cronbach, L. J. (1990). Essentials of psychological testing (5th ed.). New York: HarperCollins.■ Cronbach, L. J., & R. E. Snow (1977). Aptitudes and instructional methods. New York: Irvington. Paperback edition, 1981.■ Csikszentmihalyi, M. (1993). The evolving self. New York: Harper Perennial.■ Culler, J. (1976). Ferdinand de Saussure. New York: Penguin Books.■ Curtius, E. R. (1973). European literature and the Latin Middle Ages. W. R. Trask (Trans.). Princeton, NJ: Princeton University Press.■ D'Alembert, J.L.R. (1963). Preliminary discourse to the encyclopedia of Diderot. R. N. Schwab (Trans.). Indianapolis: Bobbs-Merrill.■ Dampier, W. C. (1966). A history of modern science. Cambridge: Cambridge University Press.■ Darwin, C. (1911). The life and letters of Charles Darwin (Vol. 1). Francis Darwin (Ed.). New York: Appleton.■ Davidson, D. (1970) Mental events. In L. Foster & J. W. Swanson (Eds.), Experience and theory (pp. 79-101). Amherst: University of Massachussetts Press.■ Davies, P. (1995). About time: Einstein's unfinished revolution. New York: Simon & Schuster/Touchstone.■ Davis, R., & J. J. King (1977). An overview of production systems. In E. Elcock & D. Michie (Eds.), Machine intelligence 8. Chichester, England: Ellis Horwood.■ Davis, R., & D. B. Lenat (1982). Knowledge- based systems in artificial intelligence. New York: McGraw-Hill.■ Dawkins, R. (1982). The extended phenotype: The gene as the unit of selection. Oxford: W. H. Freeman.■ deKleer, J., & J. S. Brown (1983). Assumptions and ambiguities in mechanistic mental models (1983). In D. Gentner & A. L. Stevens (Eds.), Mental modes (pp. 155-190). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Dennett, D. C. (1978a). Brainstorms: Philosophical essays on mind and psychology. Montgomery, VT: Bradford Books.■ Dennett, D. C. (1978b). Toward a cognitive theory of consciousness. In D. C. Dennett, Brainstorms: Philosophical Essays on Mind and Psychology. Montgomery, VT: Bradford Books.■ Dennett, D. C. (1995). Darwin's dangerous idea: Evolution and the meanings of life. New York: Simon & Schuster/Touchstone.■ Descartes, R. (1897-1910). Traite de l'homme. In Oeuvres de Descartes (Vol. 11, pp. 119-215). Paris: Charles Adam & Paul Tannery. (Originally published in 1634.)■ Descartes, R. (1950). Discourse on method. L. J. Lafleur (Trans.). New York: Liberal Arts Press. (Originally published in 1637.)■ Descartes, R. (1951). Meditation on first philosophy. L. J. Lafleur (Trans.). New York: Liberal Arts Press. (Originally published in 1641.)■ Descartes, R. (1955). The philosophical works of Descartes. E. S. Haldane and G.R.T. Ross (Trans.). New York: Dover. (Originally published in 1911 by Cambridge University Press.)■ Descartes, R. (1967). Discourse on method (Pt. V). In E. S. Haldane and G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 106-118). Cambridge: Cambridge University Press. (Originally published in 1637.)■ Descartes, R. (1970a). Discourse on method. In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 181-200). Cambridge: Cambridge University Press. (Originally published in 1637.)■ Descartes, R. (1970b). Principles of philosophy. In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 178-291). Cambridge: Cambridge University Press. (Originally published in 1644.)■ Descartes, R. (1984). Meditations on first philosophy. In J. Cottingham, R. Stoothoff & D. Murduch (Trans.), The philosophical works of Descartes (Vol. 2). Cambridge: Cambridge University Press. (Originally published in 1641.)■ Descartes, R. (1986). Meditations on first philosophy. J. Cottingham (Trans.). Cambridge: Cambridge University Press. (Originally published in 1641 as Med itationes de prima philosophia.)■ deWulf, M. (1956). An introduction to scholastic philosophy. Mineola, NY: Dover Books.■ Dixon, N. F. (1981). Preconscious processing. London: Wiley.■ Doyle, A. C. (1986). The Boscombe Valley mystery. In Sherlock Holmes: The com plete novels and stories (Vol. 1). New York: Bantam.■ Dreyfus, H., & S. Dreyfus (1986). Mind over machine. New York: Free Press.■ Dreyfus, H. L. (1972). What computers can't do: The limits of artificial intelligence (revised ed.). New York: Harper & Row.■ Dreyfus, H. L., & S. E. Dreyfus (1986). Mind over machine: The power of human intuition and expertise in the era of the computer. New York: Free Press.■ Edelman, G. M. (1992). Bright air, brilliant fire: On the matter of the mind. New York: Basic Books.■ Ehrenzweig, A. (1967). The hidden order of art. London: Weidenfeld & Nicolson.■ Einstein, A., & L. Infeld (1938). The evolution of physics. New York: Simon & Schuster.■ Eisenstein, S. (1947). Film sense. New York: Harcourt, Brace & World.■ Everdell, W. R. (1997). The first moderns. Chicago: University of Chicago Press.■ Eysenck, M. W. (1977). Human memory: Theory, research and individual difference. Oxford: Pergamon.■ Eysenck, M. W. (1982). Attention and arousal: Cognition and performance. Berlin: Springer.■ Eysenck, M. W. (1984). A handbook of cognitive psychology. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Fancher, R. E. (1979). Pioneers of psychology. New York: W. W. Norton.■ Farrell, B. A. (1981). The standing of psychoanalysis. New York: Oxford University Press.■ Feldman, D. H. (1980). Beyond universals in cognitive development. Norwood, NJ: Ablex.■ Fetzer, J. H. (1996). Philosophy and cognitive science (2nd ed.). New York: Paragon House.■ Finke, R. A. (1990). Creative imagery: Discoveries and inventions in visualization. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Flanagan, O. (1991). The science of the mind. Cambridge MA: MIT Press/Bradford Books.■ Fodor, J. (1983). The modularity of mind. Cambridge, MA: MIT Press/Bradford Books.■ Frege, G. (1972). Conceptual notation. T. W. Bynum (Trans.). Oxford: Clarendon Press. (Originally published in 1879.)■ Frege, G. (1979). Logic. In H. Hermes, F. Kambartel & F. Kaulbach (Eds.), Gottlob Frege: Posthumous writings. Chicago: University of Chicago Press. (Originally published in 1879-1891.)■ Freud, S. (1959). Creative writers and day-dreaming. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 9, pp. 143-153). London: Hogarth Press.■ Freud, S. (1966). Project for a scientific psychology. In J. Strachey (Ed.), The stan dard edition of the complete psychological works of Sigmund Freud (Vol. 1, pp. 295-398). London: Hogarth Press. (Originally published in 1950 as Aus den AnfaЁngen der Psychoanalyse, in London by Imago Publishing.)■ Freud, S. (1976). Lecture 18-Fixation to traumas-the unconscious. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 16, p. 285). London: Hogarth Press.■ Galileo, G. (1990). Il saggiatore [The assayer]. In S. Drake (Ed.), Discoveries and opinions of Galileo. New York: Anchor Books. (Originally published in 1623.)■ Gassendi, P. (1970). Letter to Descartes. In "Objections and replies." In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 2, pp. 179-240). Cambridge: Cambridge University Press. (Originally published in 1641.)■ Gazzaniga, M. S. (1988). Mind matters: How mind and brain interact to create our conscious lives. Boston: Houghton Mifflin in association with MIT Press/Bradford Books.■ Genesereth, M. R., & N. J. Nilsson (1987). Logical foundations of artificial intelligence. Palo Alto, CA: Morgan Kaufmann.■ Ghiselin, B. (1952). The creative process. New York: Mentor.■ Ghiselin, B. (1985). The creative process. Berkeley, CA: University of California Press. (Originally published in 1952.)■ Gilhooly, K. J. (1996). Thinking: Directed, undirected and creative (3rd ed.). London: Academic Press.■ Glass, A. L., K. J. Holyoak & J. L. Santa (1979). Cognition. Reading, MA: AddisonWesley.■ Goody, J. (1977). The domestication of the savage mind. Cambridge: Cambridge University Press.■ Gruber, H. E. (1980). Darwin on man: A psychological study of scientific creativity (2nd ed.). Chicago: University of Chicago Press.■ Gruber, H. E., & S. Davis (1988). Inching our way up Mount Olympus: The evolving systems approach to creative thinking. In R. J. Sternberg (Ed.), The nature of creativity: Contemporary psychological perspectives. Cambridge: Cambridge University Press.■ Guthrie, E. R. (1972). The psychology of learning. New York: Harper. (Originally published in 1935.)■ Habermas, J. (1972). Knowledge and human interests. Boston: Beacon Press.■ Hadamard, J. (1945). The psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press.■ Hand, D. J. (1985). Artificial intelligence and psychiatry. Cambridge: Cambridge University Press.■ Harris, M. (1981). The language myth. London: Duckworth.■ Haugeland, J. (Ed.) (1981). Mind design: Philosophy, psychology, artificial intelligence. Cambridge, MA: MIT Press/Bradford Books.■ Haugeland, J. (1981a). The nature and plausibility of cognitivism. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 243-281). Cambridge, MA: MIT Press.■ Haugeland, J. (1981b). Semantic engines: An introduction to mind design. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 1-34). Cambridge, MA: MIT Press/Bradford Books.■ Haugeland, J. (1985). Artificial intelligence: The very idea. Cambridge, MA: MIT Press.■ Hawkes, T. (1977). Structuralism and semiotics. Berkeley: University of California Press.■ Hebb, D. O. (1949). The organisation of behaviour. New York: Wiley.■ Hebb, D. O. (1958). A textbook of psychology. Philadelphia: Saunders.■ Hegel, G.W.F. (1910). The phenomenology of mind. J. B. Baille (Trans.). London: Sonnenschein. (Originally published as Phaenomenologie des Geistes, 1807.)■ Heisenberg, W. (1958). Physics and philosophy. New York: Harper & Row.■ Hempel, C. G. (1966). Philosophy of natural science. Englewood Cliffs, NJ: PrenticeHall.■ Herman, A. (1997). The idea of decline in Western history. New York: Free Press.■ Herrnstein, R. J., & E. G. Boring (Eds.) (1965). A source book in the history of psy chology. Cambridge, MA: Harvard University Press.■ Herzmann, E. (1964). Mozart's creative process. In P. H. Lang (Ed.), The creative world of Mozart (pp. 17-30). London: Oldbourne Press.■ Hilgard, E. R. (1957). Introduction to psychology. London: Methuen.■ Hobbes, T. (1651). Leviathan. London: Crooke.■ Holliday, S. G., & M. J. Chandler (1986). Wisdom: Explorations in adult competence. Basel, Switzerland: Karger.■ Horn, J. L. (1986). In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 3). Hillsdale, NJ: Erlbaum.■ Hull, C. (1943). Principles of behavior. New York: Appleton-Century-Crofts.■ Hume, D. (1955). An inquiry concerning human understanding. New York: Liberal Arts Press. (Originally published in 1748.)■ Hume, D. (1975). An enquiry concerning human understanding. In L. A. SelbyBigge (Ed.), Hume's enquiries (3rd. ed., revised P. H. Nidditch). Oxford: Clarendon. (Spelling and punctuation revised.) (Originally published in 1748.)■ Hume, D. (1978). A treatise of human nature. L. A. Selby-Bigge (Ed.), Hume's enquiries (3rd. ed., revised P. H. Nidditch). Oxford: Clarendon. (With some modifications of spelling and punctuation.) (Originally published in 1690.)■ Hunt, E. (1973). The memory we must have. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language. (pp. 343-371) San Francisco: W. H. Freeman.■ Husserl, E. (1960). Cartesian meditations. The Hague: Martinus Nijhoff.■ Inhelder, B., & J. Piaget (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books. (Originally published in 1955 as De la logique de l'enfant a` la logique de l'adolescent. [Paris: Presses Universitaire de France])■ James, W. (1890a). The principles of psychology (Vol. 1). New York: Dover Books.■ James, W. (1890b). The principles of psychology. New York: Henry Holt.■ Jevons, W. S. (1900). The principles of science (2nd ed.). London: Macmillan.■ Johnson, G. (1986). Machinery of the mind: Inside the new science of artificial intelli gence. New York: Random House.■ Johnson-Laird, P. N. (1983). Mental models: Toward a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.■ Johnson-Laird, P. N. (1988). The computer and the mind: An introduction to cognitive science. Cambridge, MA: Harvard University Press.■ Jones, E. (1961). The life and work of Sigmund Freud. L. Trilling & S. Marcus (Eds.). London: Hogarth.■ Jones, R. V. (1985). Complementarity as a way of life. In A. P. French & P. J. Kennedy (Eds.), Niels Bohr: A centenary volume. Cambridge, MA: Harvard University Press.■ Kant, I. (1933). Critique of Pure Reason (2nd ed.). N. K. Smith (Trans.). London: Macmillan. (Originally published in 1781 as Kritik der reinen Vernunft.)■ Kant, I. (1891). Solution of the general problems of the Prolegomena. In E. Belfort (Trans.), Kant's Prolegomena. London: Bell. (With minor modifications.) (Originally published in 1783.)■ Katona, G. (1940). Organizing and memorizing: Studies in the psychology of learning and teaching. New York: Columbia University Press.■ Kaufman, A. S. (1979). Intelligent testing with the WISC-R. New York: Wiley.■ Koestler, A. (1964). The act of creation. New York: Arkana (Penguin).■ Kohlberg, L. (1971). From is to ought. In T. Mischel (Ed.), Cognitive development and epistemology. (pp. 151-235) New York: Academic Press.■ KoЁhler, W. (1925). The mentality of apes. New York: Liveright.■ KoЁhler, W. (1927). The mentality of apes (2nd ed.). Ella Winter (Trans.). London: Routledge & Kegan Paul.■ KoЁhler, W. (1930). Gestalt psychology. London: G. Bell.■ KoЁhler, W. (1947). Gestalt psychology. New York: Liveright.■ KoЁhler, W. (1969). The task of Gestalt psychology. Princeton, NJ: Princeton University Press.■ Kuhn, T. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.■ Langer, E. J. (1989). Mindfulness. Reading, MA: Addison-Wesley.■ Langer, S. (1962). Philosophical sketches. Baltimore: Johns Hopkins University Press.■ Langley, P., H. A. Simon, G. L. Bradshaw & J. M. Zytkow (1987). Scientific dis covery: Computational explorations of the creative process. Cambridge, MA: MIT Press.■ Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior, the Hixon Symposium (pp. 112-146) New York: Wiley.■ LeDoux, J. E., & W. Hirst (1986). Mind and brain: Dialogues in cognitive neuroscience. Cambridge: Cambridge University Press.■ Lehnert, W. (1978). The process of question answering. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Leiber, J. (1991). Invitation to cognitive science. Oxford: Blackwell.■ Lenat, D. B., & G. Harris (1978). Designing a rule system that searches for scientific discoveries. In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern directed inference systems (pp. 25-52) New York: Academic Press.■ Levenson, T. (1995). Measure for measure: A musical history of science. New York: Touchstone. (Originally published in 1994.)■ Leґvi-Strauss, C. (1963). Structural anthropology. C. Jacobson & B. Grundfest Schoepf (Trans.). New York: Basic Books. (Originally published in 1958.)■ Levine, M. W., & J. M. Schefner (1981). Fundamentals of sensation and perception. London: Addison-Wesley.■ Lewis, C. I. (1946). An analysis of knowledge and valuation. LaSalle, IL: Open Court.■ Lighthill, J. (1972). A report on artificial intelligence. Unpublished manuscript, Science Research Council.■ Lipman, M., A. M. Sharp & F. S. Oscanyan (1980). Philosophy in the classroom. Philadelphia: Temple University Press.■ Lippmann, W. (1965). Public opinion. New York: Free Press. (Originally published in 1922.)■ Locke, J. (1956). An essay concerning human understanding. Chicago: Henry Regnery Co. (Originally published in 1690.)■ Locke, J. (1975). An essay concerning human understanding. P. H. Nidditch (Ed.). Oxford: Clarendon. (Originally published in 1690.) (With spelling and punctuation modernized and some minor modifications of phrasing.)■ Lopate, P. (1994). The art of the personal essay. New York: Doubleday/Anchor Books.■ Lorimer, F. (1929). The growth of reason. London: Kegan Paul. Machlup, F., & U. Mansfield (Eds.) (1983). The study of information. New York: Wiley.■ Manguel, A. (1996). A history of reading. New York: Viking.■ Markey, J. F. (1928). The symbolic process. London: Kegan Paul.■ Martin, R. M. (1969). On Ziff's "Natural and formal languages." In S. Hook (Ed.), Language and philosophy: A symposium (pp. 249-263). New York: New York University Press.■ Mazlish, B. (1993). The fourth discontinuity: the co- evolution of humans and machines. New Haven, CT: Yale University Press.■ McCarthy, J., & P. J. Hayes (1969). Some philosophical problems from the standpoint of artificial intelligence. In B. Meltzer & D. Michie (Eds.), Machine intelligence 4. Edinburgh: Edinburgh University Press.■ McClelland, J. L., D. E. Rumelhart & G. E. Hinton (1986). The appeal of parallel distributed processing. In D. E. Rumelhart, J. L. McClelland & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the mi crostructure of cognition (Vol. 1, pp. 3-40). Cambridge, MA: MIT Press/ Bradford Books.■ McCorduck, P. (1979). Machines who think. San Francisco: W. H. Freeman.■ McLaughlin, T. (1970). Music and communication. London: Faber & Faber.■ Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review 69, 431-436.■ Meehl, P. E., & C. J. Golden (1982). Taxometric methods. In Kendall, P. C., & Butcher, J. N. (Eds.), Handbook of research methods in clinical psychology (pp. 127-182). New York: Wiley.■ Mehler, J., E.C.T. Walker & M. Garrett (Eds.) (1982). Perspectives on mental rep resentation: Experimental and theoretical studies of cognitive processes and ca pacities. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Mill, J. S. (1900). A system of logic, ratiocinative and inductive: Being a connected view of the principles of evidence and the methods of scientific investigation. London: Longmans, Green.■ Miller, G. A. (1979, June). A very personal history. Talk to the Cognitive Science Workshop, Cambridge, MA.■ Miller, J. (1983). States of mind. New York: Pantheon Books.■ Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston (Ed.), The psychology of computer vision (pp. 211-277). New York: McGrawHill.■ Minsky, M., & S. Papert (1973). Artificial intelligence. Condon Lectures, Oregon State System of Higher Education, Eugene, Oregon.■ Minsky, M. L. (1986). The society of mind. New York: Simon & Schuster.■ Mischel, T. (1976). Psychological explanations and their vicissitudes. In J. K. Cole & W. J. Arnold (Eds.), Nebraska Symposium on motivation (Vol. 23). Lincoln, NB: University of Nebraska Press.■ Morford, M.P.O., & R. J. Lenardon (1995). Classical mythology (5th ed.). New York: Longman.■ Murdoch, I. (1954). Under the net. New York: Penguin.■ Nagel, E. (1959). Methodological issues in psychoanalytic theory. In S. Hook (Ed.), Psychoanalysis, scientific method, and philosophy: A symposium. New York: New York University Press.■ Nagel, T. (1979). Mortal questions. London: Cambridge University Press.■ Nagel, T. (1986). The view from nowhere. Oxford: Oxford University Press.■ Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.■ Neisser, U. (1972). Changing conceptions of imagery. In P. W. Sheehan (Ed.), The function and nature of imagery (pp. 233-251). London: Academic Press.■ Neisser, U. (1976). Cognition and reality. San Francisco: W. H. Freeman.■ Neisser, U. (1978). Memory: What are the important questions? In M. M. Gruneberg, P. E. Morris & R. N. Sykes (Eds.), Practical aspects of memory (pp. 3-24). London: Academic Press.■ Neisser, U. (1979). The concept of intelligence. In R. J. Sternberg & D. K. Detterman (Eds.), Human intelligence: Perspectives on its theory and measurement (pp. 179-190). Norwood, NJ: Ablex.■ Nersessian, N. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science (pp. 3-44). Minneapolis: University of Minnesota Press.■ Newell, A. (1973a). Artificial intelligence and the concept of mind. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 1-60). San Francisco: W. H. Freeman.■ Newell, A. (1973b). You can't play 20 questions with nature and win. In W. G. Chase (Ed.), Visual information processing (pp. 283-310). New York: Academic Press.■ Newell, A., & H. A. Simon (1963). GPS: A program that simulates human thought. In E. A. Feigenbaum & J. Feldman (Eds.), Computers and thought (pp. 279-293). New York & McGraw-Hill.■ Newell, A., & H. A. Simon (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.■ Nietzsche, F. (1966). Beyond good and evil. W. Kaufmann (Trans.). New York: Vintage. (Originally published in 1885.)■ Nilsson, N. J. (1971). Problem- solving methods in artificial intelligence. New York: McGraw-Hill.■ Nussbaum, M. C. (1978). Aristotle's Princeton University Press. De Motu Anamalium. Princeton, NJ:■ Oersted, H. C. (1920). Thermo-electricity. In Kirstine Meyer (Ed.), H. C. Oersted, Natuurvidenskabelige Skrifter (Vol. 2). Copenhagen: n.p. (Originally published in 1830 in The Edinburgh encyclopaedia.)■ Ong, W. J. (1982). Orality and literacy: The technologizing of the word. London: Methuen.■ Onians, R. B. (1954). The origins of European thought. Cambridge, MA: Cambridge University Press.■ Osgood, C. E. (1960). Method and theory in experimental psychology. New York: Oxford University Press. (Originally published in 1953.)■ Osgood, C. E. (1966). Language universals and psycholinguistics. In J. H. Greenberg (Ed.), Universals of language (2nd ed., pp. 299-322). Cambridge, MA: MIT Press.■ Palmer, R. E. (1969). Hermeneutics. Evanston, IL: Northwestern University Press.■ Peirce, C. S. (1934). Some consequences of four incapacities-Man, a sign. In C. Hartsborne & P. Weiss (Eds.), Collected papers of Charles Saunders Peirce (Vol. 5, pp. 185-189). Cambridge, MA: Harvard University Press.■ Penfield, W. (1959). In W. Penfield & L. Roberts, Speech and brain mechanisms. Princeton, NJ: Princeton University Press.■ Penrose, R. (1994). Shadows of the mind: A search for the missing science of conscious ness. Oxford: Oxford University Press.■ Perkins, D. N. (1981). The mind's best work. Cambridge, MA: Harvard University Press.■ Peterfreund, E. (1986). The heuristic approach to psychoanalytic therapy. In■ J. Reppen (Ed.), Analysts at work, (pp. 127-144). Hillsdale, NJ: Analytic Press.■ Piaget, J. (1952). The origin of intelligence in children. New York: International Universities Press. (Originally published in 1936.)■ Piaget, J. (1954). Le langage et les opeґrations intellectuelles. Proble` mes de psycho linguistique. Symposium de l'Association de Psychologie Scientifique de Langue Francёaise. Paris: Presses Universitaires de France.■ Piaget, J. (1977). Problems of equilibration. In H. E. Gruber & J. J. Voneche (Eds.), The essential Piaget (pp. 838-841). London: Routlege & Kegan Paul. (Originally published in 1975 as L'eґquilibration des structures cognitives [Paris: Presses Universitaires de France].)■ Piaget, J., & B. Inhelder. (1973). Memory and intelligence. New York: Basic Books.■ Pinker, S. (1994). The language instinct. New York: Morrow.■ Pinker, S. (1996). Facts about human language relevant to its evolution. In J.-P. Changeux & J. Chavaillon (Eds.), Origins of the human brain. A symposium of the Fyssen foundation (pp. 262-283). Oxford: Clarendon Press. Planck, M. (1949). Scientific autobiography and other papers. F. Gaynor (Trans.). New York: Philosophical Library.■ Planck, M. (1990). Wissenschaftliche Selbstbiographie. W. Berg (Ed.). Halle, Germany: Deutsche Akademie der Naturforscher Leopoldina.■ Plato (1892). Meno. In The Dialogues of Plato (B. Jowett, Trans.; Vol. 2). New York: Clarendon. (Originally published circa 380 B.C.)■ Poincareґ, H. (1913). Mathematical creation. In The foundations of science. G. B. Halsted (Trans.). New York: Science Press.■ Poincareґ, H. (1921). The foundations of science: Science and hypothesis, the value of science, science and method. G. B. Halstead (Trans.). New York: Science Press.■ Poincareґ, H. (1929). The foundations of science: Science and hypothesis, the value of science, science and method. New York: Science Press.■ Poincareґ, H. (1952). Science and method. F. Maitland (Trans.) New York: Dover.■ Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.■ Polanyi, M. (1958). Personal knowledge. London: Routledge & Kegan Paul.■ Popper, K. (1968). Conjectures and refutations: The growth of scientific knowledge. New York: Harper & Row/Basic Books.■ Popper, K., & J. Eccles (1977). The self and its brain. New York: Springer-Verlag.■ Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.■ Putnam, H. (1975). Mind, language and reality: Philosophical papers (Vol. 2). Cambridge: Cambridge University Press.■ Putnam, H. (1987). The faces of realism. LaSalle, IL: Open Court.■ Pylyshyn, Z. W. (1981). The imagery debate: Analog media versus tacit knowledge. In N. Block (Ed.), Imagery (pp. 151-206). Cambridge, MA: MIT Press.■ Pylyshyn, Z. W. (1984). Computation and cognition: Towards a foundation for cog nitive science. Cambridge, MA: MIT Press/Bradford Books.■ Quillian, M. R. (1968). Semantic memory. In M. Minsky (Ed.), Semantic information processing (pp. 216-260). Cambridge, MA: MIT Press.■ Quine, W.V.O. (1960). Word and object. Cambridge, MA: Harvard University Press.■ Rabbitt, P.M.A., & S. Dornic (Eds.). Attention and performance (Vol. 5). London: Academic Press.■ Rawlins, G.J.E. (1997). Slaves of the Machine: The quickening of computer technology. Cambridge, MA: MIT Press/Bradford Books.■ Reid, T. (1970). An inquiry into the human mind on the principles of common sense. In R. Brown (Ed.), Between Hume and Mill: An anthology of British philosophy- 1749- 1843 (pp. 151-178). New York: Random House/Modern Library.■ Reitman, W. (1970). What does it take to remember? In D. A. Norman (Ed.), Models of human memory (pp. 470-510). London: Academic Press.■ Ricoeur, P. (1974). Structure and hermeneutics. In D. I. Ihde (Ed.), The conflict of interpretations: Essays in hermeneutics (pp. 27-61). Evanston, IL: Northwestern University Press.■ Robinson, D. N. (1986). An intellectual history of psychology. Madison: University of Wisconsin Press.■ Rorty, R. (1979). Philosophy and the mirror of nature. Princeton, NJ: Princeton University Press.■ Rosch, E. (1977). Human categorization. In N. Warren (Ed.), Studies in cross cultural psychology (Vol. 1, pp. 1-49) London: Academic Press.■ Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 27-48). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Rosch, E., & B. B. Lloyd (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Rose, S. (1970). The chemistry of life. Baltimore: Penguin Books.■ Rose, S. (1976). The conscious brain (updated ed.). New York: Random House.■ Rose, S. (1993). The making of memory: From molecules to mind. New York: Anchor Books. (Originally published in 1992)■ Roszak, T. (1994). The cult of information: A neo- Luddite treatise on high- tech, artificial intelligence, and the true art of thinking (2nd ed.). Berkeley: University of California Press.■ Royce, J. R., & W. W. Rozeboom (Eds.) (1972). The psychology of knowing. New York: Gordon & Breach.■ Rumelhart, D. E. (1977). Introduction to human information processing. New York: Wiley.■ Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In R. J. Spiro, B. Bruce & W. F. Brewer (Eds.), Theoretical issues in reading comprehension. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Rumelhart, D. E., & J. L. McClelland (1986). On learning the past tenses of English verbs. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 2). Cambridge, MA: MIT Press.■ Rumelhart, D. E., P. Smolensky, J. L. McClelland & G. E. Hinton (1986). Schemata and sequential thought processes in PDP models. In J. L. McClelland, D. E. Rumelhart & the PDP Research Group (Eds.), Parallel Distributed Processing (Vol. 2, pp. 7-57). Cambridge, MA: MIT Press.■ Russell, B. (1927). An outline of philosophy. London: G. Allen & Unwin.■ Russell, B. (1961). History of Western philosophy. London: George Allen & Unwin.■ Russell, B. (1965). How I write. In Portraits from memory and other essays. London: Allen & Unwin.■ Russell, B. (1992). In N. Griffin (Ed.), The selected letters of Bertrand Russell (Vol. 1), The private years, 1884- 1914. Boston: Houghton Mifflin. Ryecroft, C. (1966). Psychoanalysis observed. London: Constable.■ Sagan, C. (1978). The dragons of Eden: Speculations on the evolution of human intel ligence. New York: Ballantine Books.■ Salthouse, T. A. (1992). Expertise as the circumvention of human processing limitations. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 172-194). Cambridge: Cambridge University Press.■ Sanford, A. J. (1987). The mind of man: Models of human understanding. New Haven, CT: Yale University Press.■ Sapir, E. (1921). Language. New York: Harcourt, Brace, and World.■ Sapir, E. (1964). Culture, language, and personality. Berkeley: University of California Press. (Originally published in 1941.)■ Sapir, E. (1985). The status of linguistics as a science. In D. G. Mandelbaum (Ed.), Selected writings of Edward Sapir in language, culture and personality (pp. 160166). Berkeley: University of California Press. (Originally published in 1929).■ Scardmalia, M., & C. Bereiter (1992). Literate expertise. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 172-194). Cambridge: Cambridge University Press.■ Schafer, R. (1954). Psychoanalytic interpretation in Rorschach testing. New York: Grune & Stratten.■ Schank, R. C. (1973). Identification of conceptualizations underlying natural language. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 187-248). San Francisco: W. H. Freeman.■ Schank, R. C. (1976). The role of memory in language processing. In C. N. Cofer (Ed.), The structure of human memory. (pp. 162-189) San Francisco: W. H. Freeman.■ Schank, R. C. (1986). Explanation patterns: Understanding mechanically and creatively. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Schank, R. C., & R. P. Abelson (1977). Scripts, plans, goals, and understanding. Hillsdale, NJ: Lawrence Erlbaum Associates.■ SchroЁdinger, E. (1951). Science and humanism. Cambridge: Cambridge University Press.■ Searle, J. R. (1981a). Minds, brains, and programs. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 282-306). Cambridge, MA: MIT Press.■ Searle, J. R. (1981b). Minds, brains and programs. In D. Hofstadter & D. Dennett (Eds.), The mind's I (pp. 353-373). New York: Basic Books.■ Searle, J. R. (1983). Intentionality. New York: Cambridge University Press.■ Serres, M. (1982). The origin of language: Biology, information theory, and thermodynamics. M. Anderson (Trans.). In J. V. Harari & D. F. Bell (Eds.), Hermes: Literature, science, philosophy (pp. 71-83). Baltimore: Johns Hopkins University Press.■ Simon, H. A. (1966). Scientific discovery and the psychology of problem solving. In R. G. Colodny (Ed.), Mind and cosmos: Essays in contemporary science and philosophy (pp. 22-40). Pittsburgh: University of Pittsburgh Press.■ Simon, H. A. (1979). Models of thought. New Haven, CT: Yale University Press.■ Simon, H. A. (1989). The scientist as a problem solver. In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The impact of Herbert Simon. Hillsdale, N.J.: Lawrence Erlbaum Associates.■ Simon, H. A., & C. Kaplan (1989). Foundations of cognitive science. In M. Posner (Ed.), Foundations of cognitive science (pp. 1-47). Cambridge, MA: MIT Press.■ Simonton, D. K. (1988). Creativity, leadership and chance. In R. J. Sternberg (Ed.), The nature of creativity. Cambridge: Cambridge University Press.■ Skinner, B. F. (1974). About behaviorism. New York: Knopf.■ Smith, E. E. (1988). Concepts and thought. In J. Sternberg & E. E. Smith (Eds.), The psychology of human thought (pp. 19-49). Cambridge: Cambridge University Press.■ Smith, E. E. (1990). Thinking: Introduction. In D. N. Osherson & E. E. Smith (Eds.), Thinking. An invitation to cognitive science. (Vol. 3, pp. 1-2). Cambridge, MA: MIT Press.■ Socrates. (1958). Meno. In E. H. Warmington & P. O. Rouse (Eds.), Great dialogues of Plato W.H.D. Rouse (Trans.). New York: New American Library. (Original publication date unknown.)■ Solso, R. L. (1974). Theories of retrieval. In R. L. Solso (Ed.), Theories in cognitive psychology. Potomac, MD: Lawrence Erlbaum Associates.■ Spencer, H. (1896). The principles of psychology. New York: Appleton-CenturyCrofts.■ Steiner, G. (1975). After Babel: Aspects of language and translation. New York: Oxford University Press.■ Sternberg, R. J. (1977). Intelligence, information processing, and analogical reasoning. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Sternberg, R. J. (1994). Intelligence. In R. J. Sternberg, Thinking and problem solving. San Diego: Academic Press.■ Sternberg, R. J., & J. E. Davidson (1985). Cognitive development in gifted and talented. In F. D. Horowitz & M. O'Brien (Eds.), The gifted and talented (pp. 103-135). Washington, DC: American Psychological Association.■ Storr, A. (1993). The dynamics of creation. New York: Ballantine Books. (Originally published in 1972.)■ Stumpf, S. E. (1994). Philosophy: History and problems (5th ed.). New York: McGraw-Hill.■ Sulloway, F. J. (1996). Born to rebel: Birth order, family dynamics, and creative lives. New York: Random House/Vintage Books.■ Thorndike, E. L. (1906). Principles of teaching. New York: A. G. Seiler.■ Thorndike, E. L. (1970). Animal intelligence: Experimental studies. Darien, CT: Hafner Publishing Co. (Originally published in 1911.)■ Titchener, E. B. (1910). A textbook of psychology. New York: Macmillan.■ Titchener, E. B. (1914). A primer of psychology. New York: Macmillan.■ Toulmin, S. (1957). The philosophy of science. London: Hutchinson.■ Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organisation of memory. London: Academic Press.■ Turing, A. (1946). In B. E. Carpenter & R. W. Doran (Eds.), ACE reports of 1946 and other papers. Cambridge, MA: MIT Press.■ Turkle, S. (1984). Computers and the second self: Computers and the human spirit. New York: Simon & Schuster.■ Tyler, S. A. (1978). The said and the unsaid: Mind, meaning, and culture. New York: Academic Press.■ van Heijenoort (Ed.) (1967). From Frege to Goedel. Cambridge: Harvard University Press.■ Varela, F. J. (1984). The creative circle: Sketches on the natural history of circularity. In P. Watzlawick (Ed.), The invented reality (pp. 309-324). New York: W. W. Norton.■ Voltaire (1961). On the Penseґs of M. Pascal. In Philosophical letters (pp. 119-146). E. Dilworth (Trans.). Indianapolis: Bobbs-Merrill.■ Wagman, M. (1991a). Artificial intelligence and human cognition: A theoretical inter comparison of two realms of intellect. Westport, CT: Praeger.■ Wagman, M. (1991b). Cognitive science and concepts of mind: Toward a general theory of human and artificial intelligence. Westport, CT: Praeger.■ Wagman, M. (1993). Cognitive psychology and artificial intelligence: Theory and re search in cognitive science. Westport, CT: Praeger.■ Wagman, M. (1995). The sciences of cognition: Theory and research in psychology and artificial intelligence. Westport, CT: Praeger.■ Wagman, M. (1996). Human intellect and cognitive science: Toward a general unified theory of intelligence. Westport, CT: Praeger.■ Wagman, M. (1997a). Cognitive science and the symbolic operations of human and artificial intelligence: Theory and research into the intellective processes. Westport, CT: Praeger.■ Wagman, M. (1997b). The general unified theory of intelligence: Central conceptions and specific application to domains of cognitive science. Westport, CT: Praeger.■ Wagman, M. (1998a). Cognitive science and the mind- body problem: From philosophy to psychology to artificial intelligence to imaging of the brain. Westport, CT: Praeger.■ Wagman, M. (1998b). Language and thought in humans and computers: Theory and research in psychology, artificial intelligence, and neural science. Westport, CT: Praeger.■ Wagman, M. (1998c). The ultimate objectives of artificial intelligence: Theoretical and research foundations, philosophical and psychological implications. Westport, CT: Praeger.■ Wagman, M. (1999). The human mind according to artificial intelligence: Theory, re search, and implications. Westport, CT: Praeger.■ Wagman, M. (2000). Scientific discovery processes in humans and computers: Theory and research in psychology and artificial intelligence. Westport, CT: Praeger.■ Wall, R. (1972). Introduction to mathematical linguistics. Englewood Cliffs, NJ: Prentice-Hall.■ Wallas, G. (1926). The Art of Thought. New York: Harcourt, Brace & Co.■ Wason, P. (1977). Self contradictions. In P. Johnson-Laird & P. Wason (Eds.), Thinking: Readings in cognitive science. Cambridge: Cambridge University Press.■ Wason, P. C., & P. N. Johnson-Laird. (1972). Psychology of reasoning: Structure and content. Cambridge, MA: Harvard University Press.■ Watson, J. (1930). Behaviorism. New York: W. W. Norton.■ Watzlawick, P. (1984). Epilogue. In P. Watzlawick (Ed.), The invented reality. New York: W. W. Norton, 1984.■ Weinberg, S. (1977). The first three minutes: A modern view of the origin of the uni verse. New York: Basic Books.■ Weisberg, R. W. (1986). Creativity: Genius and other myths. New York: W. H. Freeman.■ Weizenbaum, J. (1976). Computer power and human reason: From judgment to cal culation. San Francisco: W. H. Freeman.■ Wertheimer, M. (1945). Productive thinking. New York: Harper & Bros.■ Whitehead, A. N. (1925). Science and the modern world. New York: Macmillan.■ Whorf, B. L. (1956). In J. B. Carroll (Ed.), Language, thought and reality: Selected writings of Benjamin Lee Whorf. Cambridge, MA: MIT Press.■ Whyte, L. L. (1962). The unconscious before Freud. New York: Anchor Books.■ Wiener, N. (1954). The human use of human beings. Boston: Houghton Mifflin.■ Wiener, N. (1964). God & Golem, Inc.: A comment on certain points where cybernetics impinges on religion. Cambridge, MA: MIT Press.■ Winograd, T. (1972). Understanding natural language. New York: Academic Press.■ Winston, P. H. (1987). Artificial intelligence: A perspective. In E. L. Grimson & R. S. Patil (Eds.), AI in the 1980s and beyond (pp. 1-12). Cambridge, MA: MIT Press.■ Winston, P. H. (Ed.) (1975). The psychology of computer vision. New York: McGrawHill.■ Wittgenstein, L. (1953). Philosophical investigations. Oxford: Basil Blackwell.■ Wittgenstein, L. (1958). The blue and brown books. New York: Harper Colophon.■ Woods, W. A. (1975). What's in a link: Foundations for semantic networks. In D. G. Bobrow & A. Collins (Eds.), Representations and understanding: Studies in cognitive science (pp. 35-84). New York: Academic Press.■ Woodworth, R. S. (1938). Experimental psychology. New York: Holt; London: Methuen (1939).■ Wundt, W. (1904). Principles of physiological psychology (Vol. 1). E. B. Titchener (Trans.). New York: Macmillan.■ Wundt, W. (1907). Lectures on human and animal psychology. J. E. Creighton & E. B. Titchener (Trans.). New York: Macmillan.■ Young, J. Z. (1978). Programs of the brain. New York: Oxford University Press.■ Ziman, J. (1978). Reliable knowledge: An exploration of the grounds for belief in science. Cambridge: Cambridge University Press.Historical dictionary of quotations in cognitive science > Bibliography
-
6 high
1. adjective1) (at, from, or reaching up to, a great distance from ground-level, sea-level etc: a high mountain; a high dive; a dive from the high diving-board.) alto2) (having a particular height: This building is about 20 metres high; My horse is fifteen hands high.) de altura3) (great; large; considerable: The car was travelling at high speed; He has a high opinion of her work; They charge high prices; high hopes; The child has a high fever/temperature.) alto; elevado; grande4) (most important; very important: the high altar in a church; Important criminal trials are held at the High Court; a high official.) mayor; supremo; alto5) (noble; good: high ideals.) bueno, noble6) ((of a wind) strong: The wind is high tonight.) fuerte7) ((of sounds) at or towards the top of a (musical) range: a high note.) alto8) ((of voices) like a child's voice (rather than like a man's): He still speaks in a high voice.) agudo9) ((of food, especially meat) beginning to go bad.) pasado10) (having great value: Aces and kings are high cards.) importante; de gran valor
2. adverb(at, or to, a great distance from ground-level, sea-level etc: The plane was flying high in the sky; He'll rise high in his profession.) alto- highly- highness
- high-chair
- high-class
- higher education
- high fidelity
- high-handed
- high-handedly
- high-handedness
- high jump
- highlands
- high-level
- highlight
3. verb(to draw particular attention to (a person, thing etc).) destacar, hacer resaltar, poner de relieve- high-minded
- high-mindedness
- high-pitched
- high-powered
- high-rise
- highroad
- high school
- high-spirited
- high spirits
- high street
- high-tech
4. adjective((also hi-tech): high-tech industries.) de alta tecnología, de tecnología punta- high treason
- high water
- highway
- Highway Code
- highwayman
- high wire
- high and dry
- high and low
- high and mighty
- the high seas
- it is high time
high adj1. altoit is over 29,000 feet high tiene más de 29.000 pies de altura2. fuerte3. agudotr[haɪ]1 alto,-a■ how high is that mountain? ¿qué altura tiene aquella montaña?2 (elevated, intense) alto,-a, elevado,-a3 (important) alto,-a, importante; (strong) fuerte4 SMALLMUSIC/SMALL alto,-a5 (very good) bueno,-a,6 (going rotten - food) pasado,-a; (- game) manido,-a7 (of time) pleno,-a8 slang (on drugs) flipado,-a, colocado,-a1 alto■ feelings often run high at football games a menudo los ánimos se exaltan en los partidos de fútbol1 punto máximo, récord nombre masculino2 SMALLMETEOROLOGY/SMALL zona de alta presión, anticiclón nombre masculino\SMALLIDIOMATIC EXPRESSION/SMALLto be in for the high jump familiar tener los días contadosto be in high spirits estar de buen humorto be on a high sentirse muy biento have friends in high places estar muy bien relacionado,-ato leave somebody high and dry dejar plantado,-a a alguiento search high and low for something buscar algo por todas parteshigh chair silla altaHigh Commissioner Alto Comisario, Alto ComisionadoHigh Court Tribunal nombre masculino Supremohigh fidelity alta fidelidad nombre femeninohigh jump SMALLSPORT/SMALL salto de alturahigh noon mediodía nombre masculinohigh priest sumo sacerdote nombre masculinohigh road carretera principalhigh season temporada altahigh school SMALLBRITISH ENGLISH/SMALL instituto de enseñanza secundaria (para alumnos de entre 11 y 18 años) 2 SMALLAMERICAN ENGLISH/SMALL instituto de enseñanza secundaria (para alumnos de entre 15 y 18 años)high tea merienda-cenathe high life la buena vidathe High Street la Calle Mayorhigh ['haɪ] adv: altohigh adj1) tall: altoa high wall: una pared alta2) elevated: alto, elevadohigh prices: precios elevadoshigh blood pressure: presión alta3) great, important: grande, importante, altoa high number: un número grandehigh society: alta sociedadhigh hopes: grandes esperanzas4) : alto (en música)5) intoxicated: borracho, drogadohigh n1) : récord m, punto m máximoto reach an all-time high: batir el récord2) : zona f de alta presión (en meteorología)4)on high : en las alturasadj.• alto, -a adj.• atiplado, -a adj.• de altura adj.• elevado, -a adj.• eminente adj.• empinado, -a adj.• encandilado, -a adj.• encumbrado, -a adj.• manido, -a adj.• mayor adj.• prócer adj.• subido, -a adj.• sumo, -a adj.• superior adj.n.• alta presión s.f.• marcha directa s.f.
I haɪadjective -er, -est1)a) ( tall) <building/wall/mountain> altohow high is it? — ¿qué altura tiene?
the tower is 40 m high — la torre tiene 40 m de alto or de altura
a 12 ft high wall — un muro de 12 pies de alto or de altura
the river is very high — el río está muy alto or crecido
high cheekbones — pómulos mpl salientes
c) ( in status) <office/rank/officials> altod) (morally, ethically) <ideals/principles/aims> elevado2)a) (considerable, greater than usual) <temperature/speed/pressure> alto; < wind> fuerteto have a high color — ( permanently) ser* rubicundo; ( because of a fever) estar* muy colorado or rojo
to pay a high price for something — pagar* algo muy caro
to be high in vitamins/proteins — ser* rico en vitaminas/proteínas
b) (good, favorable)3)a) (Lit, Theat)a moment of high comedy/drama — un momento comiquísimo/muy dramático
b) ( climactic) culminante4)a) (happy, excited)we had a high old time — (colloq) lo pasamos estupendamente
b) ( intoxicated) (colloq) drogado, colocado (Esp fam)to be/get high on something — estar* drogado or (Esp tb) colocado/drogarse* or (Esp tb) colocarse* con algo (fam)
5) ( of time)
II
adverb -er, -esta) < fly> altohigh up — arriba, en lo alto
to aim high — \<\<marksman\>\> apuntar alto; \<\<ambitious person\>\> picar* alto
to search o hunt o look high and low (for something) — remover* cielo y tierra (para encontrar algo)
c) (in amount, degree)how high are you prepared to bid? — ¿hasta cuánto estás dispuesto a pujar or ofrecer?
III
1)a) c ( level) récord mb) u[haɪ]on high — ( in heaven) en las alturas; ( high above) en lo alto
1. ADJ(compar higher) (superl highest)1) (=tall, elevated) [building, mountain] alto; [plateau] elevado; [altitude] grandea building 60 metres high — un edificio de 60 metros de alto or de altura
it's 20 metres high — tiene 20 metros de alto or de altura
•
the ceilings are very high — los techos son muy altos•
how high is Ben Nevis/that tree? — ¿qué altura tiene el Ben Nevis/ese árbol?•
economic reform is high on the agenda — la reforma económica figura entre los asuntos más importantes a tratar•
the river is high — el río está crecido•
I've known her since she was so high * — la conozco desde que era así (de pequeña)•
the sun was high in the sky — el sol daba de plenothe boats lay at the river's edge, high and dry — los botes estaban en la orilla del río, varados
- leave sb high and dry2) (=considerable, great) [level, risk, rent, salary, principles] alto; [price, tax, number] alto, elevado; [speed] alto, gran; [quality] alto, bueno; [colour] subido; [complexion] (characteristically) rojizo; (temporarily) enrojecido; [wind] fuertetemperatures were in the high 80s — las temperaturas alcanzaron los ochenta y muchos, las temperaturas rondaron los 90 grados
we offer education of the highest quality — ofrecemos una educación de la más alta or de la mejor calidad
•
to have high blood pressure — tener la tensión alta, ser hipertenso•
to have high hopes of sth, I had high hopes of being elected — tenía muchas esperanzas de que me eligieran•
parsley is high in calcium — el perejil es rico en calcio•
to have a high opinion of sb — (=think highly of) tener muy buena opinión or concepto de algn; (=be fond of) tener a algn en alta estima•
to pay a high price for sth — (lit) pagar mucho dinero por algo; (fig) pagar algo muy caro•
to have a high temperature — tener mucha fiebre, tener una fiebre muy alta- have a high old timegear, priority, profile, spirit, stake, high 1., 4)it's high time... * —
3) (=important, superior) [rank, position, office] alto•
high and mighty, she's too high and mighty — es demasiado engreídashe moves in the circles of the high and mighty — se mueve en círculos de los poderosos, se mueve en círculos de gente de mucho fuste pej
- get up on one's high horsethere's no need to get (up) on your high horse! — ¡no hace falta que te subas a la parra!
- come down off or get off one's high horsein high places —
to have friends in high places — tener amigos importantes or con influencias
people in high places — gente influyente or importante
4) (=high-pitched) [sound, note] alto; [voice] agudoon a high note —
5) * (=intoxicated)to be high (on) — [+ drink, drugs] estar colocado (de) *
to get high (on) — [+ drink, drugs] colocarse (de) *
she was high on her latest success — estaba encantada or entusiasmada con su último éxito
- be as high as a kite6) (Culin) (=mature) [game, cheese] que huele fuerte; (=rotten) [meat] pasado2. ADV(compar higher) (superl highest)1) (in height) [fly, rise] a gran altura•
high above, an eagle circled high above — un águila circulaba en las alturasthe town is perched high above the river — el pueblo está en un alto, sobre el río
•
high up, his farm was high up in the mountains — su granja estaba en lo alto de las montañas- hold one's head up high- live high on the hog- hunt or search high and low for sth/sbaim, fly, head 1., 1), stand 3., 5)2) (in degree, number, strength)•
the bidding went as high as £500 — las ofertas llegaron hasta 500 libras3. N1)on high — (=in heaven) en el cielo, en las alturas
there's been a new directive from on high — (fig) ha habido una nueva directriz de arriba
2) (=peak)- be on a high3) (Econ) máximo mthe Dow Jones index reached a high of 2503 — el índice de Dow Jones alcanzó un máximo de 2.503
4) (Met) zona f de altas presiones; (esp US) temperatura f máxima5) (US) (Aut) (=top gear) directa f4.CPDhigh altar N — altar m mayor
high beam N (US) (Aut) —
he had his lights on high beam — llevaba las luces largas or de cruce
high camp N — (Theat) amaneramiento m
high chair N — silla f alta (para niño), trona f (Sp)
High Church N — sector de la Iglesia Anglicana muy cercano a la liturgia y ritos católicos
high comedy N — (Theat) comedia f de costumbres
it was high comedy — (fig) era de lo más cómico
high command N — (Mil) alto mando m
high commission N — (=international body) alto comisionado m; (=embassy) embajada f (que representa a uno de los países de la Commonwealth en otro)
high commissioner N — [of international body] alto comisario(-a) m / f; (=ambassador) embajador(a) m / f (de un país de la Commonwealth en otro)
high-definitionHigh Court N — (Jur) Tribunal m Supremo
high dependency unit N — (Med) unidad f de alta dependencia
high diving N — saltos mpl de trampolín de gran altura
high explosive N — explosivo m de gran potencia; high-explosive
high fashion N — alta costura f
high five, high-five N — choque m de cinco
•
to give sb a high five — chocar los cinco con algnhigh flier N —
he's a high flier — es ambicioso, tiene talento y promete
High German N — alto alemán m
high ground N (fig) —
they believe they have or occupy the moral high ground in this conflict — creen que tienen moralmente la razón de su parte en este conflicto
high heels NPL — (=heels) tacones mpl altos; (=shoes) zapatos mpl de tacón
high jinks † * NPL — jolgorio msing, jarana f
there were high jinks last night — hubo jolgorio or jarana anoche
high jump N — (Sport) salto m de altura
high jumper N — (Sport) saltador(a) m / f de altura
the high life N — (gen) la buena vida; (in high society) la vida de la buena sociedad
high noon N — (=midday) mediodía m; (fig) (=peak) apogeo m; (=critical point) momento m crucial
high point N — [of show, evening] punto m culminante, clímax m inv ; [of visit, holiday] lo más destacado; [of career] punto m culminante, cenit m
high priest N — sumo sacerdote m
high relief N — alto relieve m
to throw or bring sth into high relief — (fig) poner algo de relieve
high road N — (esp Brit) carretera f
the high road to success/disaster — el camino directo al éxito/desastre
high roller N — (US) (gen) derrochón(-ona) m / f; (gambling) jugador(a) m / f empedernido*
high school N — (US, Brit) instituto m de enseñanza secundaria, ≈ liceo m (LAm)
junior high (school) — (US) instituto donde se imparten los dos primeros años de bachillerato
high school diploma N — (US) ≈ bachillerato m
high school graduate N — (US) ≈ bachiller mf
the high seas NPL — alta mar fsing
high season N — temporada f alta
high spot N — [of show, evening] punto m culminante, clímax m inv ; [of visit, holiday] lo más destacado; [of career] punto m culminante, cenit m
high stakes NPL —
- play for high stakeshigh street N — calle f mayor, calle f principal
high street banks — bancos mpl principales
high street shops — tiendas fpl de la calle principal
high summer N — pleno verano m, pleno estío m
high table N — (gen) mesa f principal, mesa f presidencial; (Univ, Scol) mesa f de los profesores
high tea N — (Brit) merienda-cena f (que se toma acompañada de té)
at high tide — en la pleamar, en marea alta
high treason N — alta traición f
high-water markhigh water N — pleamar f, marea f alta
HIGH SCHOOL En Estados Unidos las high schools son los institutos donde los adolescentes de 15 a 18 años realizan la educación secundaria, que dura tres cursos ( grades), desde el noveno hasta el duodécimo año de la enseñanza; al final del último curso se realiza un libro conmemorativo con fotos de los alumnos y profesores de ese año Yearbook y los alumnos reciben el diploma de high school en una ceremonia formal de graduación. Estos centros suelen ser un tema frecuente en las películas y programas de televisión estadounidenses en los que se resalta mucho el aspecto deportivo - sobre todo el fútbol americano y el baloncesto - además de algunos acontecimientos sociales como el baile de fin de curso, conocido como Senior Prom.high wire act N — número m en la cuerda floja, número m de funambulismo
See:see cultural note YEARBOOK in yearbook* * *
I [haɪ]adjective -er, -est1)a) ( tall) <building/wall/mountain> altohow high is it? — ¿qué altura tiene?
the tower is 40 m high — la torre tiene 40 m de alto or de altura
a 12 ft high wall — un muro de 12 pies de alto or de altura
the river is very high — el río está muy alto or crecido
high cheekbones — pómulos mpl salientes
c) ( in status) <office/rank/officials> altod) (morally, ethically) <ideals/principles/aims> elevado2)a) (considerable, greater than usual) <temperature/speed/pressure> alto; < wind> fuerteto have a high color — ( permanently) ser* rubicundo; ( because of a fever) estar* muy colorado or rojo
to pay a high price for something — pagar* algo muy caro
to be high in vitamins/proteins — ser* rico en vitaminas/proteínas
b) (good, favorable)3)a) (Lit, Theat)a moment of high comedy/drama — un momento comiquísimo/muy dramático
b) ( climactic) culminante4)a) (happy, excited)we had a high old time — (colloq) lo pasamos estupendamente
b) ( intoxicated) (colloq) drogado, colocado (Esp fam)to be/get high on something — estar* drogado or (Esp tb) colocado/drogarse* or (Esp tb) colocarse* con algo (fam)
5) ( of time)
II
adverb -er, -esta) < fly> altohigh up — arriba, en lo alto
to aim high — \<\<marksman\>\> apuntar alto; \<\<ambitious person\>\> picar* alto
to search o hunt o look high and low (for something) — remover* cielo y tierra (para encontrar algo)
c) (in amount, degree)how high are you prepared to bid? — ¿hasta cuánto estás dispuesto a pujar or ofrecer?
III
1)a) c ( level) récord mb) uon high — ( in heaven) en las alturas; ( high above) en lo alto
-
7 innovation
инновации
1. Процесс создания и освоения новых технологий и продуктов, приводящий к повышению эффективности производства. 2. Новая техника, технологии, являющиеся результатом научно-технического прогресса. Инновации, в современных условиях, достигаются преимущественно путем инвестиций в нематериальные активы (НИОКР, информационные технологии, переподготовку кадров, привлечение покупателей) Инновации в самом общем смысле, прежде всего, делятся на два класса: инновации процесса и инновации продукта, хотя они тесно связаны между собой; возможно как изготовление нового продукта старыми методами, так и изготовление старого продукта новыми методами – и наоборот. Не следует смешивать понятия инноваций и изобретений. Второе – более узко, относится к технике и технологии. Однако порою простая реорганизация производства ( а это организационная инновация) может принести не меньший экономический эффект, чем изобретение, техническое усовершенствование. Инновации – основа и движущая сила научно-технического прогресса во всех его видах: трудосберегающего, капиталосберегающего, нейтрального. Основоположник теории инноваций австрийский экономист Й.Шумпетер утверждал, что двигателем экономического развития выступает предприимчивость, выражающаяся в постоянном поиске новых комбинаций факторов производства, дающих предпринимателю возможность получать прибыль, большую по сравнению со средней. Все инновации связаны с большой долей риска. Но известно и другое: отказ от инноваций является еще более рисковым делом, поскольку ведет к замедлению научно-технического прогресса и экономического роста в целом.См. Диффузия инноваций.
[ http://slovar-lopatnikov.ru/]Тематики
EN
инновация
1. Вложение средств в экономику, обеспечивающее смену поколений техники и технологии.
2. Новая техника, технология, являющиеся результатом достижений научно-технического прогресса. Развитие изобретательства, появление пионерских и крупных изобретений является существенным фактором инновации.
[ http://www.lexikon.ru/dict/buh/index.html]
инновация
1.- См статью Иннновации, 2. — результат вложения средств (инвестиций) в разработку новой техники и технологии, во внедрение новых форм бизнеса, современных методов работы на рынке, новых товаров и услуг, финансовых инструментов.
[ http://slovar-lopatnikov.ru/]Параллельные тексты EN-RU из ABB Review. Перевод компании Интент
Partners in technologyNew challenges to a history of cooperation with customersПартнеры по технологииНовые уроки сотрудничества с заказчикамиABB’s predecessor companies, ASEA and BBC, were founded almost 120 years ago in a time when electromagnetism and Maxwell’s equations were considered “rocket science.” Since then several technological transitions have occurred and ABB has successfully outlived them all while many other companies vanished at some point along the way. This has been possible because of innovation and a willingness to learn from history. Understanding historical connections between products, technology and industrial economics is extremely Partners in technology New challenges to a history of cooperation with customers George A. Fodor, Sten Linder, Jan-Erik Ibstedt, Lennart Thegel, Fredrik Norlund, Håkan Wintzell, Jarl Sobel important when planning future technologies and innovations.Предшественницы АББ, компании ASEA и BBC, были основаны почти 120 лет назад, в то время, когда электромагнетизм и уравнения Максвелла считались «космическими технологиями». С тех пор прошло несколько технических революций и АББ успешно пережила их все, в то время как многие другие компании затерялись по дороге. Это стало возможным, благодаря постоянным инновациям и стремлению учиться на уроках истории. Для планирования будущих технологий и инноваций огромную роль играет понимание исторических взаимосвязей между продуктами, технологиями и экономикойThese connections rely on information channels in companies and their existence cannot be underestimated if a company is to survive. An organization can acquire more information than any one individual, and the optimal use of this information depends on the existence and types of communication channels between those working in a company and the relevant people outside it.Эти взаимосвязи опираются на существующие в компании информационные каналы и, если компания намерена выжить, их значение нельзя недооценивать. Организация может накопить значительно больше информации, чем любой отдельный человек, и оптимальное использование этой информации зависит от наличия и типов коммуникационных каналов между работниками компании и причастными людьми за ее пределами.Force Measurement, a division of ABB AB, has a long tradition of innovation. Thanks to strong ties with its customers, suppliers, research institutes and universities, Force Measurement provides state-of-the-art equipment for accurate and reliable measurement and control in a broad range of applications. At the same time, established principles such as Maxwell’s equations continue to be applied in new and surprisingly innovative ways to produce products that promote long-term growth and increased competitiveness.Группа измерения компании АББ имеет давние традиции использования инноваций. Благодаря прочным связям с заказчиками, поставщиками, исследовательскими институтами и университетами, она создает уникальное оборудование для точных и надежных измерений в самых разных областях. В то же время незыблемые принципы, подобные уравнениям Максвелла, продолжают применяться новыми и удивительно инновационными способами, позволяя создавать продукты, обеспечивающие устойчивый рост и высокую конкурентоспособность.Innovation is a key factor if companies and their customers are to survive what can only be called truly testing times. The target of innovation is to find and implement ideas that reshape industries, reinvent markets and redesign value chains, and many of these ideas come from innovative customers.Если компания и ее заказчики намерены пережить тяжелые времена, то основное внимание следует обратить на инновации. Целью инноваций является поиск и воплощение идей, позволяющих перевернуть промышленность, заново открыть рынки и перестроить стоимостные цепочки, причем многие из этих идей поступают от заказчиков.Key to successful innovation is communication or the types of information channels employed by firms [1, 2]. A global company like ABB, with offices and factories spanning 90 countries, faces many challenges in maintaining information channels. First of all, there are the internal challenges. Ideas need to be evaluated from many different perspectives to determine their overall impact on the market. Selecting the most effective ones requires expertise and teamwork from the various business, marketing and technology competence groups. Just as important are the channels of communication that exist between ABB, and its customers and suppliers.Секрет успешных инноваций кроется в типах используемых фирмой информационных каналов [1, 2]. Глобальные компании, подобные АББ, с офисами и заводами более чем в 90 странах, сталкиваются с серьезными проблемами управления информационными каналами. Во-первых, существуют внутренние проблемы. Чтобы определить ценность идеи и ее общее влияние на рынок, ее нужно подвергнуть всесторонней оценке. Выбор наиболее эффективных идей требует коллективной работы различных экономических, маркетинговых и технологических групп. Не менее важны и коммуникационные каналы между компанией АББ и ее заказчиками и поставщиками.Many of ABB’s customers come from countries that are gradually developing strong technology and scientific cultures thanks to major investments in very ambitious research programs. China and India, for example, are two such countries. In fact, the Chinese Academy of Sciences is currently conducting research projects in all state of-the-art technologies. Countries in Africa and Eastern Europe are capitalizing on their pool of young talent to create a culture of technology development. Emerging markets, while welcome, mean stiffer competition, and competition to companies like ABB encourages even greater levels of innovationМногие заказчики АББ пришли из стран, постоянно развивающих сильную технологию и научную культуру путем крупных инвестиций в грандиозные исследовательские программы. К таким странам относятся, например, Индия и Китай. На самом деле, Китайская академия наук ведет исследования по всем перспективным направлениям. Страны Африки и Восточной Европы делают ставку на молодые таланты, которым предстоит создавать культуру технологического развития. Новые рынки, хоть и привлекательны, ужесточают конкуренцию, а конкуренция с такими компаниями, как АББ способствует повышению уровня инноваций.Many customers, similar stories Backed by 120 years of technological development and experience, ABB continues to produce products and services in many automation, power generation and robotics fields, and the examples described in the following section illustrate this broad customer range.Заказчиков много, история однаОпираясь более чем на 120-летний опыт технологического развития, АББ продолжает выпускать продукты и оказывать услуги во многих отраслях, связанных с автоматизацией, генерацией энергии и робототехникой. Приведенные далее при меры иллюстрируют широкий диапазон таких заказчиков.Тематики
EN
3.1.29 инновация (innovation): Конечный результат инновационной деятельности, получивший реализацию в виде нового или усовершенствованного продукта, реализуемого на рынке, нового или усовершенствованного технологического процесса, используемого в практической деятельности.
Источник: ГОСТ Р 54147-2010: Стратегический и инновационный менеджмент. Термины и определения оригинал документа
Англо-русский словарь нормативно-технической терминологии > innovation
8 Artificial Intelligence
In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, EventuallyJust as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)5) Problems in Machine Intelligence Arise Because Things Obvious to Any Person Are Not Represented in the ProgramMany problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)[AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract FormThe basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)There are many different kinds of reasoning one might imagine:Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory FormationIt is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)We might distinguish among four kinds of AI.Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)16) Determination of Relevance of Rules in Particular ContextsEven if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)19) A Statement of the Primary and Secondary Purposes of Artificial IntelligenceThe primary goal of Artificial Intelligence is to make machines smarter.The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)21) Perceptual Structures Can Be Represented as Lists of Elementary PropositionsIn artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)Historical dictionary of quotations in cognitive science > Artificial Intelligence
9 Forrester, Jay Wright
SUBJECT AREA: Electronics and information technology[br]b. 14 July 1918 Anselmo, Nebraska, USA[br]American electrical engineer and management expert who invented the magnetic-core random access memory used in most early digital computers.[br]Born on a cattle ranch, Forrester obtained a BSc in electrical engineering at the University of Nebraska in 1939 and his MSc at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, where he remained to teach and carry out research. Becoming interested in computing, he established the Digital Computer Laboratory at MIT in 1945 and became involved in the construction of Whirlwind I, an early general-purpose computer completed in March 1951 and used for flight-simulation by the US Army Air Force. Finding the linear memories then available for storing data a major limiting factor in the speed at which computers were able to operate, he developed a three-dimensional store based on the binary switching of the state of small magnetic cores that could be addressed and switched by a matrix of wires carrying pulses of current. The machine used parallel synchronous fixed-point computing, with fifteen binary digits and a plus sign, i.e. 16 bits in all, and contained 5,000 vacuum tubes, eleven semiconductors and a 2 MHz clock for the arithmetic logic unit. It occupied a two-storey building and consumed 150kW of electricity. From his experience with the development and use of computers, he came to realize their great potential for the simulation and modelling of real situations and hence for the solution of a variety of management problems, using data communications and the technique now known as interactive graphics. His later career was therefore in this field, first at the MIT Lincoln Laboratory in Lexington, Massachusetts (1951) and subsequently (from 1956) as Professor at the Sloan School of Management at the Massachusetts Institute of Technology.[br]Principal Honours and DistinctionsNational Academy of Engineering 1967. George Washington University Inventor of the Year 1968. Danish Academy of Science Valdemar Poulsen Gold Medal 1969. Systems, Man and Cybernetics Society Award for Outstanding Accomplishments 1972. Computer Society Pioneer Award 1972. Institution of Electrical Engineers Medal of Honour 1972. National Inventors Hall of Fame 1979. Magnetics Society Information Storage Award 1988. Honorary DEng Nebraska 1954, Newark College of Engineering 1971, Notre Dame University 1974. Honorary DSc Boston 1969, Union College 1973. Honorary DPolSci Mannheim University, Germany. Honorary DHumLett, State University of New York 1988.Bibliography1951, "Data storage in three dimensions using magnetic cores", Journal of Applied Physics 20: 44 (his first description of the core store).Publications on management include: 1961, Industrial Dynamics, Cambridge, Mass.: MIT Press; 1968, Principles of Systems, 1971, Urban Dynamics, 1980, with A.A.Legasto \& J.M.Lyneis, System Dynamics, North Holland. 1975, Collected Papers, Cambridge, Mass.: MIT.Further ReadingK.C.Redmond \& T.M.Smith, Project Whirlwind, the History of a Pioneer Computer (provides details of the Whirlwind computer).H.H.Goldstine, 1993, The Computer from Pascal to von Neumann, Princeton University Press (for more general background to the development of computers).Serrell et al., 1962, "Evolution of computing machines", Proceedings of the Institute ofRadio Engineers 1,047.M.R.Williams, 1975, History of Computing Technology, London: Prentice-Hall.See also: Burks, Arthur Walter; Goldstine, Herman H.; Wilkes, Maurice Vincent; Williams, Sir Frederic CallandKF10 Bergius, Friedrich Carl Rudolf
[br]b. 11 October 1884 Goldschmieden, near Breslau, Germanyd. 31 March Buenos Aires, Argentina[br][br]After studying chemistry in Breslau and Leipzig and assisting inter alia at the institute of Fritz Haber in Karlsruhe on the catalysis of ammonia under high pressure, in 1909 he went to Hannover to pursue his idea of turning coal into liquid hydrocarbon under high hydrogen pressure (200 atm) and high temperatures (470° C). As experiments with high pressure in chemical processes were still in their initial stages and the Technical University could not support him sufficiently, he set up a private laboratory to develop the methods and to construct the equipment himself. Four years later, in 1913, his process for producing liquid or organic compounds from coal was patented.The economic aspects of this process were apparent as the demand for fuels and lubricants increased more rapidly than the production of oil, and Bergius's process became even more important after the outbreak of the First World War. The Th. Goldschmidt company of Essen contracted him and tried large-scale production near Mannheim in 1914, but production failed because of the lack of capital and experience to operate with high pressure on an industrial level. Both capital and experience were provided jointly by the BASF company, which produced ammonia at Merseburg, and IG Farben, which took over the Bergius process in 1925, the same year that the synthesis of hydrocarbon had been developed by Fischer-Tropsch. Two years later, at the Leuna works, almost 100,000 tonnes of oil were produced from coal; during the following years, several more hydrogenation plants were to follow, especially in the eastern parts of Germany as well as in the Ruhr area, while the government guaranteed the costs. The Bergius process was extremely important for the supply of fuels to Germany during the Second World War, with the monthly production rate in 1943–4 being more than 700,000 tonnes. However, the plants were mostly destroyed at. the end of the war and were later dismantled.As a consequence of this success Bergius, who had gained an international reputation, went abroad to work as a consultant to several foreign governments. Experiments aiming to reduce the costs of production are still continued in some countries. By 1925, after he had solved all the principles of his process, he had turned to the production of dextrose by hydrolyzing wood with highly concentrated hydrochloric acid.[br]Principal Honours and DistinctionsNobel Prize 1931. Honorary doctorates, Heidelberg, Harvard and Hannover.Bibliography1907, "Über absolute Schwefelsäure als Lösungsmittel", unpublished thesis, Weida. 1913, Die Anwendung hoher Drucke bei chemischen Vorgängen und eine Nachbildungdes Entstehungsprozesses der Steinkohle, Halle. 1913, DRP no. 301, 231 (coal-liquefaction process).1925, "Verflüssigung der Kohle", Zeitschrift des Vereins Deutscher Ingenieure, 69:1313–20, 1359–62.1933, "Chemische Reaktionen unter hohem Druck", Les Prix Nobel en 1931, Stockholm, pp. 1–37.Further ReadingDeutsches Bergbau-Museum, 1985, Friedrich Bergius und die Kohleverflüssigung. Stationen einer Entwicklung, Bochum (gives a comprehensive and illustrated description of the man and the technology).H.Beck, 1982, Friedrich Bergius, ein Erfinderschicksal, Munich: Deutsches Museum (a detailed biographical description).W.Birkendfeld, 1964, Der synthetische Treibstoff 1933–1945. Ein Beitragzur nationalsozialistischen Wirtschafts-und Rüstungspolitik, Göttingen, Berlin and Frankfurt (describes the economic value of synthetic fuels for the Third Reich).WKBiographical history of technology > Bergius, Friedrich Carl Rudolf
11 Eisler, Paul
[br]b. 1907 Vienna, Austria[br]Austrian engineer responsible for the invention of the printed circuit.[br]At the age of 23, Eisler obtained a Diploma in Engineering from the Technical University of Vienna. Because of the growing Nazi influence in Austria, he then accepted a post with the His Master's Voice (HMV) agents in Belgrade, where he worked on the problems of radio reception and sound transmission in railway trains. However, he soon returned to Vienna to found a weekly radio journal and file patents on graphical sound recording (for which he received a doctorate) and on a system of stereoscopic television based on lenticular vertical scanning.In 1936 he moved to England and sold the TV patent to Marconi for £250. Unable to find a job, he carried out experiments in his rooms in a Hampstead boarding-house; after making circuits using strip wires mounted on bakelite sheet, he filed his first printed-circuit patent that year. He then tried to find ways of printing the circuits, but without success. Obtaining a post with Odeon Theatres, he invented a sound-level control for films and devised a mirror-drum continuous-film projector, but with the outbreak of war in 1939, when the company was evacuated, he chose to stay in London and was interned for a while. Released in 1941, he began work with Henderson and Spalding, a firm of lithographic printers, to whom he unwittingly assigned all future patents for the paltry sum of £1. In due course he perfected a means of printing conducting circuits and on 3 February 1943 he filed three patents covering the process. The British Ministry of Defence rejected the idea, considering it of no use for military equipment, but after he had demonstrated the technique to American visitors it was enthusiastically taken up in the US for making proximity fuses, of which many millions were produced and used for the war effort. Subsequently the US Government ruled that all air-borne electronic circuits should be printed.In the late 1940s the Instrument Department of Henderson and Spalding was split off as Technograph Printed Circuits Ltd, with Eisler as Technical Director. In 1949 he filed a further patent covering a multilayer system; this was licensed to Pye and the Telegraph Condenser Company. A further refinement, patented in the 1950s, the use of the technique for telephone exchange equipment, but this was subsequently widely infringed and although he negotiated licences in the USA he found it difficult to license his ideas in Europe. In the UK he obtained finance from the National Research and Development Corporation, but they interfered and refused money for further development, and he eventually resigned from Technograph. Faced with litigation in the USA and open infringement in the UK, he found it difficult to establish his claims, but their validity was finally agreed by the Court of Appeal (1969) and the House of Lords (1971).As a freelance inventor he filed many other printed-circuit patents, including foil heating films and batteries. When his Patent Agents proved unwilling to fund the cost of filing and prosecuting Complete Specifications he set up his own company, Eisler Consultants Ltd, to promote food and space heating, including the use of heated cans and wallpaper! As Foil Heating Ltd he went into the production of heating films, the process subsequently being licensed to Thermal Technology Inc. in California.[br]Bibliography1953, "Printed circuits: some general principles and applications of the foil technique", Journal of the British Institution of Radio Engineers 13: 523.1959, The Technology of Printed Circuits: The Foil Technique in Electronic Production.1984–5, "Reflections of my life as an inventor", Circuit World 11:1–3 (a personal account of the development of the printed circuit).1989, My Life with the Printed Circuit, Bethlehem, Pennsylvania: Lehigh University Press.KF12 Nightingale, Florence
SUBJECT AREA: Medical technology[br]b. 15 May 1820 Florence, Italyd. 13 August 1910 London, England[br]English nurse, pioneer of the reform of nursing, hospital organization and technology.[br]Dedicated to the relief of suffering, Florence Nightingale spent her early years visiting civil and military hospitals all over Europe. She then attended a course of formal training at Kaiserwerth in Germany and with the Sisters of St Vincent de Paul in Paris.She had returned to London and was managing, after having reformed, a hostel for invalid gentlewomen when in 1854 the appalling conditions of the wounded in Turkey during the Crimean War led to her taking a party of thirty-eight nurses out to Scutari. The application of principles of hygiene and sanitation resulted in dramatic improvements in conditions and on her return to England in 1856 she applied the large sums which had been raised in her honour to the founding in 1861 of the St Thomas's School of Nursing.From this base she acted as adviser, goad and promoter of sound nursing common sense for the remainder of a long life marred by a chronic invalidism quite out of keeping with the rigorousness of her role in the nursing field. It was not only in the training and conduct of nursing that her influence was primal. Many concepts of hospital technology relating to hygiene, ventilation and ward design are to be attributed to her forthright common sense. The "Nightingale ward", for a time the target of progressive reformers, has been shown still to have abiding virtues.[br]Principal Honours and DistinctionsOrder of Merit 1907.Bibliography1858, Notes on Nursing.1899, Notes on Hospitals.Further ReadingC.Woodham-Smith, 1949, Florence Nightingale, London.MG13 Pasteur, Louis
[br]b. 27 December 1822 Dole, Franced. 28 September 1895 Paris, France[br]French chemist, founder of stereochemistry, developer of microbiology and immunology, and exponent of the germ theory of disease.[br]Sustained by the family tanning business in Dole, near the Swiss border, Pasteur's school career was undistinguished, sufficing to gain him entry into the teacher-training college in Paris, the Ecole Normale, There the chemical lectures by the great organic chemist J.B.A.Dumas (1800–84) fired Pasteur's enthusiasm for chemistry which never left him. Pasteur's first research, carried out at the Ecole, was into tartaric acid and resulted in the discovery of its two optically active forms resulting from dissymmetrical forms of their molecules. This led to the development of stereochemistry. Next, an interest in alcoholic fermentation, first as Professor of Chemistry at Lille University in 1854 and then back at the Ecole from 1857, led him to deny the possibility of spontaneous generation of animal life. Doubt had previously been cast on this, but it was Pasteur's classic research that finally established that the putrefaction of broth or the fermentation of sugar could not occur spontaneously in sterile conditions, and could only be caused by airborne micro-organisms. As a result, he introduced pasteurization or brief, moderate heating to kill pathogens in milk, wine and other foods. The suppuration of wounds was regarded as a similar process, leading Lister to apply Pasteur's principles to revolutionize surgery. In 1860, Pasteur himself decided to turn to medical research. His first study again had important industrial implications, for the silk industry was badly affected by diseases of the silkworm. After prolonged and careful investigation, Pasteur found ways of dealing with the two main infections. In 1868, however, he had a stroke, which prevented him from active carrying out experimentation and restricted him to directing research, which actually was more congenial to him. Success with disease in larger animals came slowly. In 1879 he observed that a chicken treated with a weakened culture of chicken-cholera bacillus would not develop symptoms of the disease when treated with an active culture. He compared this result with Jenner's vaccination against smallpox and decided to search for a vaccine against the cattle disease anthrax. In May 1881 he staged a demonstration which clearly showed the success of his new vaccine. Pasteur's next success, finding a vaccine which could protect against and treat rabies, made him world famous, especially after a person was cured in 1885. In recognition of his work, the Pasteur Institute was set up in Paris by public subscription and opened in 1888. Pasteur's genius transcended the boundaries between science, medicine and technology, and his achievements have had significant consequences for all three fields.[br]BibliographyPasteur published over 500 books, monographs and scientific papers, reproduced in the magnificent Oeuvres de Pasteur, 1922–39, ed. Pasteur Vallery-Radot, 7 vols, Paris.Further ReadingP.Vallery-Radot, 1900, La vie de Louis Pasteur, Paris: Hachette; 1958, Louis Pasteur. A Great Life in Brief, English trans., New York (the standard biography).E.Duclaux, 1896, Pasteur: Histoire d ' un esprit, Paris; 1920, English trans., Philadelphia (perceptive on the development of Pasteur's thought in relation to contemporary science).R.Dobos, 1950, Louis Pasteur, Free Lance of Science, Boston, Mass.; 1955, French trans.LRD14 Ridley, John
SUBJECT AREA: Agricultural and food technology[br]b. 1806 West Boldon, Co. Durham, Englandd. 1887 Malvern, England[br]English developer of the stripper harvester which led to a machine suited to the conditions of Australia and South America.[br]John Ridley was a preacher in his youth, and then became a mill owner before migrating to Australia with his wife and daughters in 1839. Intending to continue his business in the new colony, he took with him a "Grasshopper" overbeam steam-engine made by James Watt, together with milling equipment. Cereal acreages were insufficient for the steam power he had available, and he expanded into saw milling as well as farming 300 acres. Aware of the Adelaide trials of reaping machines, he eventually built a prototype using the same principles as those developed by Wrathall Bull. After a successful trial in 1843 Ridley began the patent procedure in England, although he never completed the project. The agricultural press was highly enthusiastic about his machine, but when trials took place in 1855 the award went to a rival. The development of the stripper enabled a spectacular increase in the cereal acreage planted over the next decade. Ridley left Australia in 1853 and returned to England. He built a number of machines to his design in Leeds; however, these failed to perform in the much damper English climate. All of the machines were exported to South America, anticipating a substantial market to be exploited by Australian manufacturers.[br]Principal Honours and DistinctionsIn 1913 a Ridley scholarship was established by the faculty of Agriculture at Adelaide University.Further ReadingG.Quick and W.Buchele, 1978, The Grain Harvesters, American Society of Agricultural Engineers (includes a chapter devoted to the Australian developments).A.E.Ridley, 1904, A Backward Glance (describes Ridley's own story).G.L.Sutton, 1937, The Invention of the Stripper (a review of the disputed claims between Ridley and Bull).L.J.Jones, 1980, "John Ridley and the South Australian stripper", The History ofTechnology, pp. 55–103 (a more detailed study).——1979, "The early history of mechanical harvesting", The History of Technology, pp. 4,101–48 (discusses the various claims to the first invention of a machine for mechanical harvesting).AP15 Stumpf, Johann
SUBJECT AREA: Steam and internal combustion engines[br]fl. c. 1900 Germany[br]German inventor of a successful design of uniflow steam engine.[br]In 1869 Stumpf was commissioned by the Pope Manufacturing Company of Hertford, Connecticut, to set up two triple-expansion, vertical, Corliss pumping engines. He tried to simplify this complicated system and started research with the internal combustion engine and the steam turbine particularly as his models. The construction of steam turbines in several stages where the steam passed through in a unidirectional flow was being pursued at that time, and Stumpf wondered whether it would be possible to raise the efficiency of a reciprocating steam engine to the same thermal level as the turbine by the use of the uniflow principle.Stumpf began to investigate these principles without studying the work of earlier pioneers like L.J. Todd, which he later thought would have led him astray. It was not until 1908, when he was Professor at the Institute of Technology in Berlin- Charlottenburg, that he patented his successful "una-flow" steam engine. In that year he took out six British patents for improvements in details on his original one Stumpf fully realized the thermal advantages of compressing the residual steam and was able to evolve systems of coping with excessive compression when starting. He also placed steam-jackets around the ends of the cylinder. Stumpf's first engine was built in 1908 by the Erste B runner Maschinenfabrik-Gesellschaft, and licences were taken out by many other manufacturers, including those in Britain and the USA. His engine was developed into the most economical type of reciprocating steam engine.[br]Bibliography1912, The Una-Flow Steam Engine, Munich: R. Oldenbourg (his own account of the una-flow engine).Further ReadingH.W.Dickinson, 1938, A Short History of the Steam Engine, Cambridge University Press; R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge University Press (both discuss Stumpf's engine).H.J.Braun, "The National Association of German-American Technologists and technology transfer between Germany and the United States, 1844–1930", History of Technology 8 (provides details of Stumpf's earlier work).RLH16 Vitruvius Pollio
SUBJECT AREA: Architecture and building[br]b. early first century BCd. c. 25 BC[br]Roman writer on architecture and engineering subjects.[br]Nothing is known of Vitruvius apart from what can be gleaned from his only known work, the treatise De architectura. He seems to have been employed in some capacity by Julius Caesar and continued to serve under his heir, Octavianus, later Emperor Augustus, to whom he dedicated his book. It was written towards the end of his life, after Octavianus became undisputed ruler of the Empire by his victory at Actium in 31 BC, and was based partly on his own experience and partly on earlier, Hellenistic, writers.The De architectura is divided into ten books. The first seven books expound the general principles of architecture and the planning, design and construction of various types of building, public and domestic, including a consideration of techniques and materials. Book 7 deals with interior decoration, including stucco work and painting, while Book 8 treats water supply, from the location of sources to the transport of water by aqueducts, tunnels and pipes. Book 9, after a long and somewhat confused account of the astronomical theories of the day, describes various forms of clock and sundial. Finally, Book 10 deals with mechanical devices for handling building materials and raising and pumping water, for which Vitruvius draws on the earlier Greek authors Ctesibius and Hero.Although this may seem a motley assembly of subjects, to the Roman architect and builder it was a logical compendium of the subjects he was expected to know about. At the time, Vitruvius' rigid rules for the design of buildings such as temples seem to have had little influence, but his accounts of more practical matters of building materials and techniques were widely used. His illustrations to the original work were lost in antiquity, for no later manuscript includes them. Through the Middle Ages, manuscript copies were made in monastic scriptoria, although the architectural style in vogue had little relevance to those in Vitruvius: these came into their own with the Italian Renaissance. Alberti, writing the first great Renaissance treatise on architecture from 1452 to 1467, drew heavily on De architectura; those who sought to revive the styles of antiquity were bound to regard the only surviving text on the subject as authoritative. The appearance of the first printed edition in 1486 only served to extend its influence.During the sixteenth and seventeenth centuries, Vitruvius was used as a handbook for constructing machines and instruments. For the modern historian of technology and architecture the work is a source of prime importance, although it must be remembered that the illustrations in the early printed editions are of contemporary reproductions of ancient devices using the techniques of the time, rather than authentic representations of ancient technology.[br]BibliographyOf the several critical editions of De architectura there are the Teubner edition, 1899. ed. V.Rose, Leipzig; the Loeb Classical Library edition, 1962, ed. F.Granger, London: Heinemann, (with English trans. and notes); and the Collection Guillaume Budé with French trans. and full commentary, 10 vols, Paris (in progress).Further ReadingApart from the notes to the printed editions, see also: H.Plommer, 1973, Vitruvius and Later Roman Building Manuals, London. A.G.Drachmann, 1963, The Mechanical Technology of Greek and Roman Antiquity Copenhagen and London.S.L.Gibbs, 1976, Greek and Roman Sundials, New Haven and London.LRD17 cellular organization
Opsa form of organization consisting of a collection of selfmanaging firms or cells held together by mutual interest. A cellular organization is built on the principles of self-organization, member ownership, and entrepreneurship. Each cell within the organization shares common features and purposes with its sister cells but is also able to function independently. The idea is an extension of the principles of group technology, or cellular manufacturing.18 Black, Harold Stephen
[br]b. 14 April 1898 Leominster, Massachusetts, USAd. 11 December 1983 Summitt, New Jersey, USA[br]American electrical engineer who discovered that the application of negative feedback to amplifiers improved their stability and reduced distortion.[br]Black graduated from Worcester Polytechnic Institute, Massachusetts, in 1921 and joined the Western Electric Company laboratories (later the Bell Telephone Laboratories) in New York City. There he worked on a variety of electronic-communication problems. His major contribution was the discovery in 1927 that the application of negative feedback to an amplifier, whereby a fraction of the output signal is fed back to the input in the opposite phase, not only increases the stability of the amplifier but also has the effect of reducing the magnitude of any distortion introduced by it. This discovery has found wide application in the design of audio hi-fi amplifiers and various control systems, and has also given valuable insight into the way in which many animal control functions operate.During the Second World War he developed a form of pulse code modulation (PCM) to provide a practicable, secure telephony system for the US Army Signal Corps. From 1963–6, after his retirement from the Bell Labs, he was Principal Research Scientist with General Precision Inc., Little Falls, New Jersey, following which he became an independent consultant in communications. At the time of his death he held over 300 patents.[br]Principal Honours and DistinctionsInstitute of Electronic and Radio Engineers Lamme Medal 1957.Bibliography1934, "Stabilised feedback amplifiers", Electrical Engineering 53:114 (describes the principles of negative feedback).21 December 1937, US patent no. 2,106,671 (for his negative feedback discovery.1947, with J.O.Edson, "Pulse code modulation", Transactions of the American Institute of Electrical Engineers 66:895.1946, "A multichannel microwave radio relay system", Transactions of the American Institute of Electrical Engineers 65:798.1953, Modulation Theory, New York: D.van Nostrand.1988, Laboratory Management: Principles \& Practice, New York: Van Nostrand Rheinhold.Further ReadingFor early biographical details see "Harold S. Black, 1957 Lamme Medalist", Electrical Engineering (1958) 77:720; "H.S.Black", Institute of Electrical and Electronics Engineers Spectrum (1977) 54.KF19 Boole, George
SUBJECT AREA: Electronics and information technology[br]b. 2 November 1815 Lincoln, Englandd. 8 December 1864 Ballintemple, Coounty Cork, Ireland[br]English mathematician whose development of symbolic logic laid the foundations for the operating principles of modern computers.[br]Boole was the son of a tradesman, from whom he learned the principles of mathematics and optical-component manufacturing. From the early age of 16 he taught in a number of schools in West Yorkshire, and when only 20 he opened his own school in Lincoln. There, at the Mechanical Institute, he avidly read mathematical journals and the works of great mathematicians such as Lagrange, Laplace and Newton and began to tackle a variety of algebraic problems. This led to the publication of a constant stream of original papers in the newly launched Cambridge Mathematical Journal on topics in the fields of algebra and calculus, for which in 1844 he received the Royal Society Medal.In 1847 he wrote The Mathematical Analysis of Logic, which applied algebraic symbolism to logical forms, whereby the presence or absence of properties could be represented by binary states and combined, just like normal algebraic equations, to derive logical statements about a series of operations. This laid the foundations for the binary logic used in modern computers, which, being based on binary on-off devices, greatly depend on the use of such operations as "and", "nand" ("not and"), "or" and "nor" ("not or"), etc. Although he lacked any formal degree, this revolutionary work led to his appointment in 1849 to the Chair of Mathematics at Queen's College, Cork, where he continued his work on logic and also produce treatises on differential equations and the calculus of finite differences.[br]Principal Honours and DistinctionsRoyal Society Medal 1844. FRS 1857.BibliographyBoole's major contributions to logic available in republished form include George Boole: Investigation of the Laws of Thought, Dover Publications; George Boole: Laws of Thought, Open Court, and George Boole: Studies in Logic \& Probability, Open Court.1872, A Treatise on Differential Equations.Further ReadingW.Kneale, 1948, "Boole and the revival of logic", Mind 57:149.G.C.Smith (ed.), 1982, George Boole \& Augustus de Morgan. Correspondence 1842– 1864, Oxford University Press.—, 1985, George Boole: His Life and Work, McHale.E.T.Bell, 1937, Men of Mathematics, London: Victor Gollancz.KF20 Marton, Ladislaus (Laslo)
[br]b. 15 August 1901 Budapest Hungary[br]Hungarian physicist, pioneer of the development and practical application of the electron microscope.[br]He studied and obtained his degree at Zurich in 1924 and undertook research there until 1925, when he moved to Budapest to work at the Tungsram Lamp Company. He moved to the University of Brussels in 1928, and during the ensuing ten years was involved in the construction and development of a focusing electron microscope. With the second of these he was able to take micrographs of cells in 1932 and of a bacterium in 1937.In 1941 he moved to the USA to work with Radio Corporation of America (RCA).[br]Principal Honours and DistinctionsInternational Union Against Cancer Medal 1938. Verhagen Medical, Brussels 1947. US Department of Commerce Gold Medal 1955.Bibliography1947, Advances in Electronics and Electron Physics.1957, Methods of Experimental Physics.1968, Early History of the Electron Microscope.Further ReadingWatt, 1984, Principles and Practice of Electron Microscopy, Cambridge. M.Hayat, 1973–80, Principles and Techniques of Electron Microscopy.MGBiographical history of technology > Marton, Ladislaus (Laslo)
СтраницыСм. также в других словарях:
technology, history of — Introduction the development over time of systematic techniques for making and doing things. The term technology, a combination of the Greek technē, “art, craft,” with logos, “word, speech,” meant in Greece a discourse on the arts, both… … Universalium
Principles of Intelligent Urbanism — (PIU) is a theory of urban planning composed of a set of ten axioms intended to guide the formulation of city plans and urban designs. They are intended to reconcile and integrate diverse urban planning and management concerns. These axioms… … Wikipedia
Principles of Political Economy — was the most important economics or political economy textbook of the mid nineteenth century, and was written by John Stuart Mill. The first edition was published in 1848, and was revised until its seventh edition in 1871, shortly before Mill s… … Wikipedia
Principles and Standards for School Mathematics — are guidelines produced by the National Council of Teachers of Mathematics (NCTM) in 2000, setting forth recommendations for mathematics educators.[1] They form a national vision for preschool through twelfth grade mathematics education in the US … Wikipedia
Technology readiness level — (TRL) is a measure used by some United States government agencies and many of the world s major companies (and agencies) to assess the maturity of evolving technologies (materials, components, devices, etc.) prior to incorporating that technology … Wikipedia
Technology Management — is set of management disciplines that allows organization to manage it s technological fundaments to create competitive advantage. Typical concepts used in technology managment are technology strategy (a logic or role of technology in… … Wikipedia
Technology management — is set of management disciplines that allows organizations to manage its technological fundamentals to create competitive advantage. Typical concepts used in technology management are technology strategy (a logic or role of technology in… … Wikipedia
Technology Academy Finland — (formerly Millennium Prize Foundation and Finnish Technology Award Foundation) is an independent fund established in 2002 by Finnish industry and the Finnish state in partnership. The foundation s objectives also include promoting Finland as a… … Wikipedia
Technology — Tech*nol o*gy, n. [Gr. ? an art + logy; cf. Gr. ? systematic treatment: cf. F. technologie.] Industrial science; the science of systematic knowledge of the industrial arts, especially of the more important manufactures, as spinning, weaving,… … The Collaborative International Dictionary of English
TECHNOLOGY AND HALAKHAH — Halakhah deals with the prescription of the behavior of the individual, the family, the community, and a Jewish state. It encompasses all the actions in one s life. It sets forth both the principles and the guidelines along which day to day… … Encyclopedia of Judaism
Principles of War — The Principles of War were tenets originally proposed by Carl von Clausewitz in his essay Principles or War [ [http://www.clausewitz.com/CWZHOME/PrincWar/Princwr1.htm#I] , Gatzke] , and later enlarged in his book, On War . Since the mid 19th… … Wikipedia
Перевод: с английского на все языки
со всех языков на английский- Со всех языков на:
- Английский
- С английского на:
- Все языки
- Испанский
- Русский
- Французский